Banishing biofilms: loosening their grip could make food supply safer

August 27, 2007

If you could see a piece of celery that’s been magnified 10,000 times, you’d know what the scientists fighting foodborne pathogens are up against, said University of Illinois microbiologist Hans Blaschek.

“It’s like looking at a moonscape, full of craters and crevices. And many of the pathogens that cause foodborne illness, such as Shigella, E. coli, and Listeria, make sticky, sugary biofilms that get down in these crevices, stick like glue, and hang on like crazy.

“Scientists and people in the food industry are intensely interested in how these biofilms form and behave. Understanding how they work could lead to targeted approaches for their prevention and removal,” he said.

The sales figures for his new book Biofilms in the Food Environment certainly support that sense of urgency. Blaschek says the book contains the accumulated wisdom of academics who study biofilms and industry food scientists who battle them on the front lines daily.

According to Blaschek, the problem faced by produce suppliers can be a triple whammy. “If you’re unlucky enough to be dealing with a pathogen--and the pathogen has the additional attribute of being able to form biofilms—and you’re dealing with a food product that’s minimally processed, well, you’re triply unlucky,” the scientist said.

“You may be able to scrub the organism off the surface, but the cells in these biofilms are very good at aligning themselves in the subsurface areas of produce.

“Over time, the sticky cells of the biofilm form on top of each other, creating a microenvironment that behaves more like a multicelled organism. And all these little bacterial cells communicate with each other. They’re fascinating really; unfortunately, they can also be deadly,” he said.

Blaschek says the biofilms book has generated a lot of interest from the food industry. “It’s really a comprehensive reference source for industry scientists, university researchers, and regulatory agencies. In particular, food engineers who design strategies and cleaning procedures for produce need to understand how biofilms form and behave so they can develop better protocols for removing them,” he said.

“There’s an interesting discussion of the correlation between a strain’s virulence and its biofilm-forming abilities, information about cutting-edge technologies to investigate microbial compositions in biofilm ecosystems and cell-to-cell interaction, and updated findings on the molecular attributes and mechanisms involved in biofilm development,” he said.

“It’s a very applied kind of approach, connecting the research that’s being done in labs across the country with the needs of food technologists,” he added.

Source: University of Illinois at Urbana-Champaign

Explore further: Water disinfectant wipes out legionella in hospital's water supply

Related Stories

Molecular chameleons reveal bacterial biofilms

November 23, 2016

Molecules that change colour can be used to follow in real-time how bacteria form a protective biofilm around themselves. This new method, which has been developed in collaboration between researchers at Linköping University ...

Recommended for you

The oldest plesiosaur was a strong swimmer

December 14, 2017

Plesiosaurs were especially effective swimmers. These long extinct "paddle saurians" propelled themselves through the oceans by employing "underwater flight"—similar to sea turtles and penguins. Paleontologist from the ...

Averaging the wisdom of crowds

December 12, 2017

The best decisions are made on the basis of the average of various estimates, as confirmed by the research of Dennie van Dolder and Martijn van den Assem, scientists at VU Amsterdam. Using data from Holland Casino promotional ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.