New light cast on key chemical reactions in interstellar space

July 11, 2007

A detailed understanding of key chemical reactions that take place in interstellar space has been provided by groundbreaking research at two U.S. Department of Energy national laboratories and two European universities.

Argonne National Laboratory senior chemist Stephen Klippenstein – along with colleagues at Sandia National Laboratories; the Institute of Physics, University of Rennes, France; and the University of Cambridge, U.K. – has developed a detailed understanding of the dynamics of reactions between neutral radicals and neutral molecules, known as “neutral-neutral” reactions, at temperatures as low as 20 Kelvin, approximately the temperature of interstellar space.

In their work, Klippenstein and his collaborators determined why certain molecules reacted rapidly even at low temperatures by carefully comparing theory and experiment for a sample class of reactions (O3P + alkenes) that spans the range from non-reactive to highly reactive. The observed results from the experiment closely correlated with theoretical predictions, said Klippenstein.

“It was remarkable," he said, "just how well theory and experiment agreed throughout the whole spectrum from 20 Kelvin to room temperature. This means that we can rely on theory to predict which reactions will happen quickly.”

Establishing a working model for interstellar chemistry is especially important given the difficulty of performing large-scale experiments, according to Klippenstein.

“My collaborators have developed some great experimental techniques for measuring these reactions at low temperatures," he said. "But such experiments are still very time-consuming and are also hard to apply to many reactions. So schemes for predicting the reactivity for arbitrary reactions, either a priori or from extrapolation of measurements at higher temperatures, are of great utility to modelers of interstellar chemistry.”

Prior experimental studies with the CRESU (Reaction Kinetics in Uniform Supersonic Flow) technique demonstrated that a “surprising number” of neutral-neutral reactions remain rapid at very low temperatures. As a result, such reactions can play an important role in the chemistry of interstellar space, in contrast with the conventional wisdom that interstellar chemistry is essentially all ion-based.

The paper, entitled “Understanding Reactivity at Very Low Temperatures: The Reactions of Oxygen Atoms with Alkenes,” appears in the July 6 issue of Science.

Source: Argonne National Laboratory

Explore further: Webb Telescope to make a splash in search for interstellar water

Related Stories

Understanding conditions for star formation

February 6, 2018

Researchers have demonstrated how a gas escapes ice at an extremely cold temperature, providing insight into star formation in interstellar clouds. The mechanism by which hydrogen sulphide is released as gas in interstellar ...

The quantum secret to alcohol reactions in space

June 30, 2013

Chemists have discovered that an 'impossible' reaction at cold temperatures actually occurs with vigour, which could change our understanding of how alcohols are formed and destroyed in space.

Recommended for you

Muons spin tales of undiscovered particles

April 20, 2018

Scientists at U.S. Department of Energy (DOE) national laboratories are collaborating to test a magnetic property of the muon. Their experiment could point to the existence of physics beyond our current understanding, including ...

Integrating optical components into existing chip designs

April 19, 2018

Two and a half years ago, a team of researchers led by groups at MIT, the University of California at Berkeley, and Boston University announced a milestone: the fabrication of a working microprocessor, built using only existing ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.