Geologists to test theory that Asia is being 'stuffed' under Tibetan Plateau

May 4, 2007
Geologists to test theory that Asia is being 'stuffed' under Tibetan Plateau
A map of Tibet that shows the progression of Project INDEPTH, a seismic surveying expedition. Credit: Larry Brown

For nearly a decade and a half, Cornell geologist Larry Brown has been leading an international seismic profiling effort in Tibet, using explosions to probe the deep earth and discover how continents formed millions of years ago.

The project, called INDEPTH -- for International Deep Profiling of Tibet and the Himalayas -- has gone through several stages and now is a major international collaboration among scientists from the United States, China, Germany, Canada and, most recently, Ireland.

The National Science Foundation recently renewed funding for the project with a grant of $1.3 million to Cornell to finish the survey. Brown, professor of earth and atmospheric sciences, has been leading the project across the Tibetan plateau, located in the southwestern corner of China, since its inception in the early 1990s.

Tibet is one of the world's best examples of what happens when continents smash together, Brown explained, because of its famously high elevation and sprawling terrain. The Himalayas are thought to be have formed when the Indian continent slammed into Asia beginning about 50 million years ago.

The ultimate goal, according to Brown, is to piece together what happens when continents collide to form supercontinents like Eurasia. A common theory is that the Tibetan Plateau formed when India was pushed under Asia from the south.

"We'll be testing the hypothesis that, in fact, Asia is also being stuffed under the northern part of the plateau," Brown said.

In order to do that, scientists must understand the geometry of rock layers under the Earth's surface.

The researchers use echo sounding, which is the same basic technology used to map the ocean bottom and explore for oil and gas. In Tibet, the scientists set up explosions that generate sound waves, whose echoes off the deep rock layers are recorded and analyzed.

This allows an "acoustic photograph" to be taken as deep as 100 miles, but typically between 20 and 30 miles deep, said Brown, whose current work also involves deep imaging of major earthquake faults in Taiwan and an active volcano on the Caribbean island of Montserrat.

Future targets of Brown's work include sites in Brazil, Africa, Madagascar and India.

Source: Cornell University

Explore further: Researchers capture Central Asia's 'de-greening' over millions of years

Related Stories

Redesigning roots to help crop plants survive hard times

May 10, 2016

Among the likely effects of climate change, perhaps the one with the most potential to devastate human and natural communities is drought—not just a dry season or two, but a prolonged lack of rainfall over vast areas, lasting ...

ESF lists Top 10 new species for 2017

May 19, 2017

A spider and an ant whose names are drawn from references in popular modern-day literature, a brilliant pink katydid and an omnivorous rat are among the discoveries identified by the College of Environmental Science and Forestry ...

Ancestry of polar bears traced to Ireland

July 7, 2011

An international team of scientists has discovered that the female ancestor of all living polar bears was a brown bear that lived in the vicinity of present-day Britain and Ireland just prior to the peak of the last ice age ...

Recommended for you

How the Elwha dam removals changed the river's mouth

January 19, 2018

For decades, resource managers agreed that removing the two dams on the Elwha River would be a big win for the watershed as a whole and, in particular, for its anadromous trout and salmon. The dams sat on the river for more ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.