Researchers move closer to switching nuclear isomer decay on and off

April 6, 2007

Livermore researchers have moved one step closer to being able to turn on and off the decay of a nuclear isomer.

The protons and neutrons in a nucleus can be arranged in many ways. The arrangement with the lowest energy is called the ground state and all others are called excited states. (This is analogous to the ground and excited states of electrons in an atom except that nuclear excited states are typically thousands of times higher in energy.) Excited nuclear states eventually decay to the ground state via gamma emission or to another nucleus via particle emission. Most excited states are short-lived (e.g., billionth of a second). However, a few are long-lived (e.g., hours) and are called isomers.

Turning the decay on and off is key to using isiomers as high-energy density storage systems such as batteries.

Researchers at Livermore studied an isomer of Thorium-229. This isomer is unique in that its excitation energy is near optical energies, implying that one day scientists may be able to transition Th229 nuclei between the ground and isomeric states using a table-top laser.

"This would then be the first time human control would be exerted over nuclear levels," said Peter Beiersdorfer, an LLNL physicist and co-author of a paper that appears in the April 6 issue of Physical Review Letters. "This only works if the laser is tuned to exactly the correct energy."

For years, researchers have been fascinated with this isomer because it could lead to new science and technology breakthroughs. Among them are: a quantum many-body study; a clock with unparallel precision for general relativity tests; a superb qubit (a quantum bit) for quantum computing; testing the effects of the chemical environment on nuclear decay rates. Isomers also may serve as a battery for storing large amounts of energy.

However, before these exotic studies can be performed, an accurate determination of the isomer’s excitation energy above the ground state is needed. In the most recent research, Livermore scientists, along with colleagues from Los Alamos National Laboratory and NASA Goddard Space Flight Center, have made the most accurate measurement of this energy difference using an indirect technique.

"Our measurement is more accurate and differs significantly from prior results. This may explain why scientists have failed to directly see this transition. Frankly, they were looking in the wrong place," said Bret Beck, an LLNL physicist and lead-author on the paper.

The next step will be to use a laser or a synchrotron tuned to the exact energy of the spacing between the two levels and observe the transition from the ground state to the isomeric state.

Once laser excitation has proven possible, helping an excited level decay (and thus give off energy) can be tackled. "But for building a more precise clock than we have today, or building a quantum computer, excitation may be all that’s needed," Beiersdofer said.

Source: Lawrence Livermore National Laboratory

Explore further: Scientists lay foundations for new type of solar cell

Related Stories

Scientists lay foundations for new type of solar cell

January 24, 2017

An interdisciplinary team of researchers has laid the foundations for an entirely new type of photovoltaic cell. In this new method, infrared radiation is converted into electrical energy using a different mechanism from ...

Lattice of nanotraps and line narrowing in Raman gas

February 9, 2017

Decreasing the emission linewidth from a molecule is one of the key aims in precision spectroscopy. One approach is based on cooling molecules to near absolute zero. An alternative way is to localize the molecules on subwavelength ...

Why skin-to-skin contact with infants is better for everyone

February 7, 2017

Carmela Torres was 18 when she became pregnant for the first time. It was 1987 and she and her now-husband, Pablo Hernandez, were two idealistic young Colombians born in the coastal region of Montería who moved to the capital, ...

Energy boss: Nuke site reopens but work remains

January 9, 2017

The reopening of the nation's only underground nuclear waste repository nearly three years after a radiation leak marks a key step toward cleaning up a decadeslong legacy of bomb-making and research, but the U.S. energy secretary ...

Recommended for you

Scientists solve puzzle of turning graphite into diamond

February 23, 2017

(Phys.org)—Researchers have finally answered a question that has eluded scientists for years: when exposed to moderately high pressures, why does graphite turn into hexagonal diamond (also called lonsdaleite) and not the ...

Tiny particles with a big, cool role to play in microscopy

February 23, 2017

Researchers at UTS, as part of a large international collaboration, have made a breakthrough in the development of compact, low-cost and practical optical microscopy to achieve super-resolution imaging on a scale 10 times ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.