Atoms Fly Apart in Direct Crystal Melting

April 19, 2007
Atoms Fly Apart in Direct Crystal Melting
Photo courtesy of CONTAX images.

Using an intense laser and ultra-fast x-rays, Stanford Synchrotron Radiation Laboratory (SSRL) researchers have observed the atomic events involved in rapid crystal melting.

Ordinary thermal melting determines the fate of an ice cube in a cup of tea or an icicle out in the blazing sun. The slow-acting heat causes atomic nuclei within the ice to vibrate destructively, disrupting the chemical interactions between the atoms. This allows the ice to relax its shape from an ordered crystal to a disordered liquid.

At the Sub-Picosecond Pulse Source (SPPS), scientists used an alternative route to crystal melting that enabled them to make a "movie" of the atomic motions that lead to crystal disordering. The international collaboration used an ultra-fast, high-energy laser to rapidly heat the electrons in a crystal without heating the atomic nuclei; the laser warmed the outer electrons while leaving the heavy core of the atom cold. In this "electronically driven melting," the electrons gained energy and flew out of their regular orbit around the core, instantly breaking the chemical bonds they had shared with electrons from neighboring atoms.

Short bursts of x-rays provided by the SPPS measured the atomic positions of the atoms in a semiconductor material. The data, published recently in Physical Review Letters, revealed that when their bonds destabilized, the atoms moved apart from each other quickly, as if repelling each other. The semiconductor material had visible melting damage after being struck by the laser.

"This research provides verification that intense ultra-fast x-ray sources like the upcoming Linac Coherent Light Source (LCLS) will make possible the study of previously inaccessible material properties," said SSRL researcher Patrick Hillyard.

Source: by Heather Rock Woods, Stanford Linear Accelerator Center

Explore further: Chemical waves guide to catalysts of the future

Related Stories

Chemical waves guide to catalysts of the future

February 20, 2018

Spectacular electron microscope images at TU Wien lead to important findings: Chemical reactions can produce spiral-like multi-frequency waves and thus provide local information about catalysts.

What makes circadian clocks tick?

February 18, 2018

Circadian clocks are found within microbes and bacteria, plants and insects, animals and humans. These clocks arose as an adaptation to dramatic swings in daylight hours and temperature caused by the Earth's rotation. But ...

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

Urban heat island effects depend on a city's layout

February 22, 2018

The arrangement of a city's streets and buildings plays a crucial role in the local urban heat island effect, which causes cities to be hotter than their surroundings, researchers have found. The new finding could provide ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.