Artificial atoms make microwave photons countable

February 1, 2007
An Artificial Atom Inside of a Transmission Line Cavity
Scanning electron micrograph of an artificial atom (light blue) inside of a transmission line cavity (dark blue). The "atom," composed of over a billion atoms of aluminum, gives a distinct signal for each possible photon number in the cavity. The theoretical prediction (color plot) was verified by these experiments. Credit: Schuster / Yale

Using artificial atoms on a chip, Yale physicists have taken the next step toward quantum computing by demonstrating that the particle nature of microwave photons can now be detected, according to a report spotlighted in the February 1 issue of the journal Nature.

Quantum theories are often considered to apply best to processes that happen on the smallest scale of atoms and molecules. By making artificial atoms larger — to a size that is nearly visible — and using microwaves as the source of energy, the collaborative research from the laboratory of Professor Robert Schoelkopf and the theory group of Professor Steven Girvin in the departments of Applied Physics and Physics at Yale created an electronic circuit that stores and measures individual microwave photons. In the process, they bring quantum mechanics to a larger scale and hope to employ it to build new kinds of quantum machines.

"The radiation from a microwave oven or cell phone does not seem to have much in common with light, but like its visible counterpart, microwaves are made of individual photons," said Schoelkopf. "A single microwave photon is quite large, extending over one centimeter in length, and yet has one hundred thousand times less energy than even a visible photon. Unlike a camera, which absorbs the light it detects, our measurement preserves the photons for later use."

"Advances in quantum computing are among the goals of the recently launched Yale Institute of Nanoscience and Quantum Engineering (YINQE), of which Girvin and Schoelkopf are core members," said Paul Fleury, Dean of Yale Engineering and Director of YINQE. "Such manipulation of single microwave photons is an important step towards realizing a quantum computer, which could exponentially speed up computations of difficult problems in cryptography, quantum physics and chemistry."

"Much like the children's game 'telephone,' current solid state quantum computing schemes can only make nearest-neighbor interactions. This forces distant quantum bits (qubits) to communicate by passing through many intermediates causing errors," said lead author David Schuster, a graduate student who completed this work as part of his thesis in January 2007. "Single microwave photons can be used as mobile carriers of quantum information allowing distant qubits to communicate directly, avoiding these problems."

The measurements they made represent the next step in circuit quantum electrodynamics, a field introduced by the same groups at Yale in 2004 to study quantum optics with microwaves using integrated circuits. According to Girvin, the detector they designed works "as if we made an antenna on an atom." Their results demonstrate that microwaves are particles because the system gives a response representing a discrete number of interactions of the microwave with the atom.

In addition to circuits, microwaves interact with a variety of physical systems, including atomic spins, molecules, and even nuclei. Single microwave photons can act as a bridge between these naturally occurring quantum systems and fabricated electrical circuits, resulting in a hybrid processor of quantum information. The next phase of the work, according to the authors, is to connect up multiple "atoms", using the photons to transfer the information between them.

Citation:
Nature 445, 515-518 (February 1, 2007.) doi:10.1038/nature05461
Nature 431, 162-167 (September 9, 2004)

Source: Yale University

Explore further: Quantum coupling

Related Stories

Quantum coupling

December 21, 2017

Today's quantum technologies are set to revolutionize information processing, communications, and sensor technology in the coming decades. The basic building blocks of future quantum processors are, for example, atoms, superconducting ...

Butterfly emerges from quantum simulation

November 30, 2017

Quantum simulators, which are special-purpose quantum computers, will help researchers identify materials with new and useful properties. This enticing future has just taken a step forward thanks to a collaboration between ...

Physicists mix waves on superconducting qubits

November 14, 2017

Physicists from the Moscow Institute of Physics and Technology (MIPT) and Royal Holloway, University of London, have demonstrated an effect known as quantum wave mixing on an artificial atom. Their results, published in the ...

Researchers tunnel to a new light source

November 17, 2017

With concerns over moving to a clean energy platform worldwide with electric vehicles and renewables, wasted energy is a factor as important as the amount of green energy produced. Thus, solid-state lighting based upon light-emitting ...

Recommended for you

Information engine operates with nearly perfect efficiency

January 19, 2018

Physicists have experimentally demonstrated an information engine—a device that converts information into work—with an efficiency that exceeds the conventional second law of thermodynamics. Instead, the engine's efficiency ...

Team takes a deep look at memristors

January 19, 2018

In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. ...

Artificial agent designs quantum experiments

January 19, 2018

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.