Hubble Sees Star Cluster 'Infant Mortality'

January 10, 2007
Hubble Sees Star Cluster 'Infant Mortality'
The image of NGC 1313 at left was taken by the European Southern Observatory´s Very Large Telescope (VLT) in Chile on Dec. 16, 2003. The outline of the central region indicates the area observed with Hubble´s Advanced Camera for Surveys. The Hubble image at right was taken in November 2003 and February 2004. Credit: VLT image: H. Boffin (FORS/VLT/ESO) Hubble image: NASA, ESA, and A. Pellerin (STScI)

Astronomers have long known that young or "open" star clusters must eventually disrupt and dissolve into the host galaxy. They simply don't have enough gravity to hold them together, unlike their much more massive cousins, the globular star clusters.

Before Hubble, astronomers have had very few observational clues. It's been difficult to observe exactly how star clusters dissolve due to the fact that they are easily lost in the cluttered star field background of the host galaxy.

A team led by Anne Pellerin of the Space Telescope Science Institute in Baltimore used Hubble to observe the barred spiral galaxy NGC 1313 and found that a large number of very young massive blue (B-type) stars are not associated with compact star clusters anymore. B stars burn out quickly due to the quick rate at which they use up hydrogen fuel.

Because B stars have very short lives (a few tens of millions of years), the presence of a large number of massive B-type stars suggests to astronomers that
star clusters may dissolve very rapidly, within 25 million years. This is brief compared to the lifetime of the galaxy, which is measured in billions of years.

The rapid disintegration of open clusters is reinforced by the fact that the team found that the B stars are significantly more spread in the galaxy than even the more massive O-type. The O stars are so short lived (a few million years or even less), they explode as supernovae before they can be scattered outside the cluster.

In fact, the supernovae explosions of O stars could be the reason for a cluster's
rapid disintegration, say researchers. Supernovae are capable of blasting out
residual dust and gas from star formation inside a cluster. This could abruptly leave an open cluster with too little mass to gravitationally hold together for very long. In this scenario, the cluster stars drift off as other stars in the galaxy gravitationally tug on them. Previous research based on the Hubble images of the Antennae galaxies, a colliding pair of galaxies, showed that 90 percent of the clusters are dissolved in this way during the first 10 million years of their existence. However, NGC 1313 is the first example of this happening in a normal spiral galaxy.

By using the analogy of star formation in open clusters in NGC 1313, we can infer
that stars formed in a similar manner in the Milky Way, and so can help us better
understand the way the Sun was formed.

Source: Space Telescope Science Institute

Explore further: The lifetimes of massive star-forming regions

Related Stories

The lifetimes of massive star-forming regions

April 17, 2017

Astronomers can roughly estimate how long it takes for a new star to form: it is the time it takes for material in a gas cloud to collapse in free-fall, and is set by the mass, the size of the cloud, and gravity. Although ...

Supermassive black holes found in two tiny galaxies

April 17, 2017

Three years ago, a University of Utah-led team discovered that an ultra-compact dwarf galaxy contained a supermassive black hole, then the smallest known galaxy to harbor such a giant black hole. The findings suggested that ...

The arrhythmic beating of a black hole heart

April 19, 2017

At the center of the Centaurus galaxy cluster, there is a large elliptical galaxy called NGC 4696. Deeper still, there is a supermassive black hole buried within the core of this galaxy.

Recommended for you

Astronomers detect dozens of new quasars and galaxies

April 25, 2017

(Phys.org)—A team of astronomers led by Yoshiki Matsuoka of the National Astronomical Observatory of Japan (NAOJ) has detected a treasure trove of new high-redshift quasars (or quasi-stellar objects) and luminous galaxies. ...

New survey hints at exotic origin for the Cold Spot

April 25, 2017

A supervoid is unlikely to explain a 'Cold Spot' in the cosmic microwave background, according to the results of a new survey, leaving room for exotic explanations like a collision between universes. The researchers, led ...

Team discovers lull in Mars' giant impact history

April 25, 2017

From the earliest days of our solar system's history, collisions between astronomical objects have shaped the planets and changed the course of their evolution. Studying the early bombardment history of Mars, scientists at ...

Preliminary results of Breakthrough Listen project released

April 25, 2017

(Phys.org)—The team of researchers working on the Breakthrough Listen project (affiliated with SETI) has released preliminary findings after sifting through several petabytes of data obtained from three telescopes involved ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.