Physicists study remote quantum networks

November 1, 2006

U.S. physicists say the operations of two remote quantum systems can be synchronized so changes in one system are conditional on what occurs in the other.

The research team led by Jeff Kimble of the California Institute of Technology says the synchronization provides a level of real-time control that hasn't previously been achieved.

Quantum networking plays a key role in a series of proposed quantum communication and information schemes that hold promise for secure information exchange, as well as the ability to solve certain tasks faster than any classical computer.

A practical quantum network requires synchronized operations to be performed on states stored in separated nodes. The authors address the specific task of producing a pair of identical photons from two quantum nodes. They make one node ready for emitting a single photon, but, before actually releasing the particle, wait for the other node to be ready.

That method, the researchers said, significantly increases the probability that two photons are fired simultaneously, when compared with a situation without such conditional control.

The physicists say they believe their technique could have important implications for the development of quantum networks.

The research appears in the journal Nature Physics.

Copyright 2006 by United Press International

Explore further: Accelerated architecture of America's fastest supercomputer boosts QCD simulations

Related Stories

Atomic cousins team up in early quantum networking node

July 13, 2017

Large-scale quantum computers, which are an active pursuit of many university labs and tech giants, remain years away. But that hasn't stopped some scientists from thinking ahead, to a time when quantum computers might be ...

Segment of a 'Quantum Repeater' Demonstrated

April 9, 2007

Physicists at the California Institute of Technology have succeeded for the first time in the distribution of "entanglement" in a way that could lead to long-distance quantum communications, scalable quantum networks, and ...

Recommended for you

Researchers study interactions in molecules using AI

October 19, 2018

Researchers from the University of Luxembourg, Technische Universität Berlin, and the Fritz Haber Institute of the Max Planck Society have combined machine learning and quantum mechanics to predict the dynamics and atomic ...

Pushing the extra cold frontiers of superconducting science

October 18, 2018

Measuring the properties of superconducting materials in magnetic fields at close to absolute zero temperatures is difficult, but necessary to understand their quantum properties. How cold? Lower than 0.05 Kelvin (-272°C).

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.