BaBar Steadies Omega-minus Spin

November 6, 2006
BaBar Steadies Omega-minus Spin
The first evidence of the omega-minus particle in a bubble chamber. Image courtesy of Brookhaven National Laboratory

If you snatch a copy of the Particle Data Book from your colleague's back pocket and flip to the entry for the Omega-minus particle, you'll see that the very first line says the spin is "not yet measured." That entry may soon be changed. The BaBar collaboration has established that the spin of the Omega-minus, a particle that was discovered more than 40 years ago, is 3/2.

"The Omega-minus has been around for a long time and it's got a very interesting history," says BaBar collaborator Bill Dunwoodie. "It was a confirmation of Murray Gell-Mann's ideas about broken symmetry that led eventually to the quark model."

The analysis of BaBar data was primarily conducted by Veronique Ziegler, a graduate student from the University of Iowa, with Dunwoodie. The findings are published in the Sept. 15 issue of Physical Review Letters.

Bubble chamber experiments, like the one that found the first Omega-minus particle in 1964, can produce only a small number of the particles, and the collisions that produced them were not well understood. By studying the angular distribution of the particles produced by the Omega-minus when it decayed, physicists obtained information on the Omega-minus's spin, but they were unable to say anything more than that it did not have spin 1/2.

Ziegler studied Omega-minus particles resulting from the decay of charm baryons that were produced in electron-positron collisions in BaBar.

"These particles are extremely rare, but thanks to the enormous amount and quality of data BaBar has produced, we were able to carry out this analysis," Ziegler said.

In 1962, there were nine baryons (particles containing three quarks) believed to have spin 3/2. In a comment made during a conference at CERN, Murray Gell-Mann predicted there was a tenth particle that had yet to be seen. He named it Omega-minus and predicted its mass and decay properties. He even gave a recipe for the production and observation of the Omega-minus, namely by means of high-energy collisions between negative kaons and the protons in a liquid hydrogen bubble chamber.

Two years later, the short 2-centimeter track of an Omega-minus particle was seen in a photograph from the 80" bubble chamber at Brookhaven National Laboratory. The particle had almost exactly the mass that Gell-Mann had predicted. Only one month previously, Gell-Mann had submitted the first paper outlining the quark model.

Ziegler's analysis has been well-received. One reviewer wrote, "This paper is an instant classic. It will be studied by future generations of graduate students."

Source: By Rachel Courtland, Stanford Linear Accelerator Center

Related Stories

Recommended for you

Researchers turn light upside down

February 23, 2018

Researchers from CIC nanoGUNE (San Sebastian, Spain) and collaborators have reported in Science the development of a so-called hyperbolic metasurface on which light propagates with completely reshaped wafefronts. This scientific ...

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.