Student Creates Electric Tweezers

August 18, 2006
Student Creates Electric Tweezers
A small rod surfs the crests of the magnetic field generated by the five electrodes (dark circles).

The ability to sort cells or manipulate microscopic particles could soon be in the hands of small laboratories, high schools and amateur scientists, thanks to researchers at the University of Pennsylvania School of Engineering and Applied Science. They have created a device, called "electric tweezers," which can manipulate and move almost any object seen on a simple microscope slide.

The research was led by graduate student Brian Edwards, with the help of his advisor Nader Engheta, professor, and Stephane Evoy, adjunct assistant professor, both of Penn's Electrical and Systems Engineering Department. While devices with similar functionality using lasers exist, they often cost upwards of a quarter-million dollars. Edwards' device performs some of the same tasks as laser tweezers, yet at a price anticipated to be in the same range as a high-end desktop computer.

"The tweezers create an electric field that you can use to manipulate almost any object on a microscopic scale. It has the potential of being a powerful tool for research," said Edwards, a doctoral candidate in Penn's Electrical and Systems Engineering Department. "I would prefer not to put a limit on the type of tasks that can be done with it, but I hope it will find uses in anything from picking an individual cell out of a culture to fabricating circuits."

All it would take to use electric tweezers is a computer and a microscope. The tweezers' action occurs on a common glass microscope slide embedded with five electrodes. These electrodes create an electric field that can be used to push, pull, move and spin a selected object in any direction without actual physical contact. Using software Edwards developed, an operator can select an individual object from a microscope image on a computer screen.

Student Creates Electric Tweezers
A schematic of the electronic tweezer setup.

"Different types of particles respond differently to different frequencies in the electric field," Edwards said. "Once you lock onto the object of interest you can move it however you like."

The electric tweezers take advantage of the phenomenon known as dielectrophoresis, where electric fields impart a force upon a neutral particle. In essence, the object that is selected surfs atop the hills and valleys created by subtly changing the electric field. The principle works best on the microscopic scale, which makes it ideal for this application.

"Moving objects with the tweezers is a lot like playing one of those wooden labyrinth games, but, instead of twisting knobs to move a ball in the maze, we're adjusting an electric field to move a small object," Edwards said. "The tweezers move the object by fiddling with the electric field. All the math is done on the computer, so all the user needs to do is move a joystick."

According to Edwards, the electrical field can be attuned to almost anything visible through a microscope. He believes the device will be a boon to smaller laboratories that cannot afford similar devices, as well as to high schools and science hobbyists. Its size, utility and potentially low price could put it into the hands of almost anyone interested in experimenting with the technology.

"We hope that the electric tweezers could mean to science what the PC meant to computing; it's a scientific tool for the rest of us," said Hugo FitzGerald nanotechnology and licensing manager at Penn's Center for Technology Transfer.

The Center is assisting Edwards in patenting and, along with the Bressler Group, bringing electric tweezers to the marketplace.

Source: University of Pennsylvania

Explore further: Researchers develop graphene nano 'tweezers' that can grab individual biomolecules

Related Stories

Acoustic tweezers can position tiny objects

August 28, 2009

(PhysOrg.com) -- Manipulating tiny objects like single cells or nanosized beads often requires relatively large, unwieldy equipment, but now a system that uses sound as a tiny tweezers can be small enough to place on a chip, ...

Assembling micro-components with laser tweezers

March 23, 2016

A team of engineers headed by Prof Dr Cemal Esen from the Applied Laser Technologies lab at the Ruhr-Universität Bochum develop microscopic components and assemble them to larger objects with the aid of laser tweezers. They ...

Recommended for you

Some black holes erase your past

February 21, 2018

In the real world, your past uniquely determines your future. If a physicist knows how the universe starts out, she can calculate its future for all time and all space.

Reaching new heights in laser-accelerated ion energy

February 20, 2018

A laser-driven ion acceleration scheme, developed in research led at the University of Strathclyde, could lead to compact ion sources for established and innovative applications in science, medicine and industry.

MEMS chips get metatlenses

February 20, 2018

Lens technologies have advanced across all scales, from digital cameras and high bandwidth in fiber optics to the LIGO lab instruments. Now, a new lens technology that could be produced using standard computer-chip technology ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.