Computer poker program sets its own Texas Hold'em strategy

July 7, 2006

A Carnegie Mellon University computer scientist has demonstrated that you don't necessarily need to know much about poker to create a computer program that can play a winning hand of Texas Hold'Em. A knowledge of game theory, not the specialized expertise of a human poker player, is at the heart of the poker robot called GS1 developed by Tuomas Sandholm, director of Carnegie Mellon's Agent-Mediated Electronic Marketplaces Lab, and graduate student Andrew Gilpin.

Though not yet the equal of the best human players, GS1 outperformed the two leading "pokerbots" in playing heads-up, limit Texas Hold'Em in tests at Carnegie Mellon earlier this year. Both of GS1's opponents were commercially available programs that, like other pokerbots, incorporate the expertise of human poker players. GS1, by contrast, develops its strategy after performing an automated analysis of poker rules. Sandholm and Gilpin have since developed an improved version of their game-theory-based program, called GS2, which will compete in the American

Association for Artificial Intelligence's first Computer Poker Competition during the 21st National Conference on Artificial Intelligence July 16-20 in Boston.

Much as computer chess was an early test of artificial intelligence (AI), computer poker has emerged as an even greater AI challenge. "Poker is a very complex game," said Sandholm, a professor of computer science in Carnegie Mellon's School of Computer Science. "Computer poker programs really require sophisticated technology."

Unlike chess, where the status of all of the chess pieces is known to both players, poker forces players to make decisions based on incomplete information. "You don't know what the other guy is holding," Sandholm explained. And the sheer number of possible combinations of cards dealt, cards on the table and bets in two-player Texas Hold'Em games -- 1018, or a billion times a billion -- makes it impossible for even the fastest computers to fully analyze every hand.

This element of uncertainty and the vagaries of luck inherent in randomly dealt cards actually make poker a better test of AI's prowess than chess. "A lot of real-world situations have uncertainty in them and you have to deal with the uncertainty," Sandholm said. An algorithm (sequence of steps) that can capably play poker might also be useful in electronic commerce applications, such as sequential negotiation and auctions, he said.

Electronic commerce is a major research focus for Sandholm. He has developed the fastest algorithms for matching supply and demand, which can now be expressed in significantly more detail than before. He is the founder, chairman and chief scientist of CombineNet, a company that helps Fortune 1000 organizations save money and time on procurement. More than $20 billion has been sourced through CombineNet's system, generating in excess of $2.5 billion in savings for customers.

Using AI techniques to automatically set rules for electronic commerce is another direction Sandholm has pioneered. These programs generate mechanisms that can govern electronic auctions, elections or negotiations.

In his computer poker research, Sandholm has developed pokerbots that precompute the strategies for playing the first two rounds of Texas Hold'Em, the so-called "pre-flop" and "flop" rounds, when players are first dealt two cards and then three additional cards are positioned face-up. For the third and fourth betting rounds, the "turn" and the "river," his pokerbots update the probability of each possible hand by taking into account betting as well as the revealed cards. The strategy for those rounds is then computed in real-time for the setting at hand.

To reduce the computational complexity, GS1 and GS2 automatically recognize strategically equivalent hands. For instance, 25,989,600 distinct hands are possible in the second round, but only about a million are strategically different. That's still too many to compute, so the pokerbots group strategically similar hands together. The end result is 2,465 groups, a small enough number to allow computational analysis.

Source: Carnegie Mellon University

Explore further: Team reveals inner workings of victorious AI: Libratus AI defeated top pros in 20 days of poker play

Related Stories

Top poker pros face off vs. artificial intelligence

January 11, 2017

Four of the world's best professional poker players will compete against artificial intelligence developed by Carnegie Mellon University in an epic rematch to determine whether a computer can beat humans playing one of the ...

Know when to fold 'em: AI beats world's top poker players

January 31, 2017

If you were about to start playing a game of online poker, you might want to think again. Humankind has just been beaten at yet another game, this time Heads-Up No-Limit Texas Hold'em poker. This is a milestone moment for ...

Recommended for you

Researchers find tweeting in cities lower than expected

February 20, 2018

Studying data from Twitter, University of Illinois researchers found that less people tweet per capita from larger cities than in smaller ones, indicating an unexpected trend that has implications in understanding urban pace ...

Augmented reality takes 3-D printing to next level

February 20, 2018

Cornell researchers are taking 3-D printing and 3-D modeling to a new level by using augmented reality (AR) to allow designers to design in physical space while a robotic arm rapidly prints the work.

What do you get when you cross an airplane with a submarine?

February 15, 2018

Researchers from North Carolina State University have developed the first unmanned, fixed-wing aircraft that is capable of traveling both through the air and under the water – transitioning repeatedly between sky and sea. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.