Material to Aid Military in Next Generation Radar Systems Developed

July 25, 2006

Researchers at Northeastern University have developed a magnetic material that will enable radar technology used by the U.S. military to be smaller, lighter, and cheaper without compromising on performance.

Many of the radar technologies used by the U.S. Navy and Air Force require magnetic fields to operate. A key component of these radar electronics is the circulator: a device that is integral to radar Simultaneous Transmit And Receive (STAR) technology.

Traditionally, circulator designs have relied on magnets positioned on either side of the circulator to create the necessary magnetic field for operation.

These magnets tend to be large and heavy and add significant cost to the assembly of radar systems. Thousands of them are required for the most advanced radar systems and as a result, radar platforms can weigh several tons and take up an inordinate amount of space, causing a heavy burden to the host aircraft or ship. The Navy and Air Force have been searching for a solution to this problem for decades.

The breakthrough occurred when Northeastern University researchers were able to create a magnetic ceramic thin film material that possesses a spontaneous magnetic moment sufficient to eliminate the need for magnets. This new material, in the form of millimeter thick films of Ba-hexaferrite, was produced using a screen printing processing scheme which meets all the necessary specifications for STAR radar performance and is, in addition, highly cost-effective.

Researchers Vincent Harris, Carmine Vittoria, and Yajie Chen and their research team are about to embark upon developing prototypes of this technology for detailed testing. They hope that the technology will be available for widespread use by the Department of Defense by 2008.

“Northeastern University has one of the best research facilities in the country for magnetic ceramics research,” said Harris, William Lincoln Smith Professor of Electrical and Computer Engineering at Northeastern University. “This development will help to solve a significant problem that has been hampering advancement in military technology for the past few decades.”

The research was funded primarily by the Office of Naval Research as part of the “Navy After Next” initiative, the Defense Advanced Research Program Agency, and the National Science Foundation.

Source: Northeastern University

Explore further: New research on Northern Lights will improve satellite navigation accuracy

Related Stories

Statistics method shows networks differ in epileptic brains

March 6, 2017

A novel statistical approach to analyzing patients with epilepsy has revealed details about their brains' internal networks. The findings may lead to better understanding and treatment of the disease, according to Rice University ...

Falkland islands radar study impacts climate research

October 22, 2010

Physicists and engineers at the University of Leicester and the British Antarctic Survey (BAS) have installed a radar system on the Falkland Islands to monitor the upper atmosphere activity which creates the 'Southern Lights'.

Magnetic sensors can measure distances between vehicles

October 18, 2011

(PhysOrg.com) -- Every vehicle has a magnetic field, and researchers have now found that a vehicle’s magnetic field has an inverse relationship with distance at small distances. The relationship provides a way to estimate ...

Team Finds 'Metafilms' Can Shrink Radio, Radar Devices

March 18, 2008

Recent research at the National Institute of Standards and Technology has demonstrated that thin films made of “metamaterials”—manmade composites engineered to offer strange combinations of electromagnetic properties—can ...

New research signals big future for quantum radar

February 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

Recommended for you

New laser technique improves neutron yield

April 21, 2017

(Phys.org)—A team of researchers from several institutions in China has developed a new way to produce neutrons that they claim improves on conventional methods by a factor of 100. In their paper published in the journal ...

The search for deviations from standard quantum mechanics

April 21, 2017

Physicists have searched for deviations from standard quantum mechanics, testing whether quantum mechanics requires a more complex set of mathematical rules. To do so a research team led by Philip Walther at the University ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.