Material to Aid Military in Next Generation Radar Systems Developed

July 25, 2006

Researchers at Northeastern University have developed a magnetic material that will enable radar technology used by the U.S. military to be smaller, lighter, and cheaper without compromising on performance.

Many of the radar technologies used by the U.S. Navy and Air Force require magnetic fields to operate. A key component of these radar electronics is the circulator: a device that is integral to radar Simultaneous Transmit And Receive (STAR) technology.

Traditionally, circulator designs have relied on magnets positioned on either side of the circulator to create the necessary magnetic field for operation.

These magnets tend to be large and heavy and add significant cost to the assembly of radar systems. Thousands of them are required for the most advanced radar systems and as a result, radar platforms can weigh several tons and take up an inordinate amount of space, causing a heavy burden to the host aircraft or ship. The Navy and Air Force have been searching for a solution to this problem for decades.

The breakthrough occurred when Northeastern University researchers were able to create a magnetic ceramic thin film material that possesses a spontaneous magnetic moment sufficient to eliminate the need for magnets. This new material, in the form of millimeter thick films of Ba-hexaferrite, was produced using a screen printing processing scheme which meets all the necessary specifications for STAR radar performance and is, in addition, highly cost-effective.

Researchers Vincent Harris, Carmine Vittoria, and Yajie Chen and their research team are about to embark upon developing prototypes of this technology for detailed testing. They hope that the technology will be available for widespread use by the Department of Defense by 2008.

“Northeastern University has one of the best research facilities in the country for magnetic ceramics research,” said Harris, William Lincoln Smith Professor of Electrical and Computer Engineering at Northeastern University. “This development will help to solve a significant problem that has been hampering advancement in military technology for the past few decades.”

The research was funded primarily by the Office of Naval Research as part of the “Navy After Next” initiative, the Defense Advanced Research Program Agency, and the National Science Foundation.

Source: Northeastern University

Explore further: Breakthrough in controlling light transmission

Related Stories

Breakthrough in controlling light transmission

February 8, 2018

Operation of modern-day technology requires an ever-increasing use of broadband frequency signals. This, in turn, has grown the demand for reliable, efficient methods of signal transmission that prevent interference and are ...

Eclipse 2017: Science from the moon's shadow

December 11, 2017

On Dec. 11, 2017, six researchers discussed initial findings based on observations of the Sun and on Earth gathered during the solar eclipse that stretched across North America on Aug. 21, 2017. Ranging from new information ...

Falkland islands radar study impacts climate research

October 22, 2010

Physicists and engineers at the University of Leicester and the British Antarctic Survey (BAS) have installed a radar system on the Falkland Islands to monitor the upper atmosphere activity which creates the 'Southern Lights'.

Magnetic sensors can measure distances between vehicles

October 18, 2011

(PhysOrg.com) -- Every vehicle has a magnetic field, and researchers have now found that a vehicle’s magnetic field has an inverse relationship with distance at small distances. The relationship provides a way to estimate ...

Recommended for you

Some black holes erase your past

February 21, 2018

In the real world, your past uniquely determines your future. If a physicist knows how the universe starts out, she can calculate its future for all time and all space.

Reaching new heights in laser-accelerated ion energy

February 20, 2018

A laser-driven ion acceleration scheme, developed in research led at the University of Strathclyde, could lead to compact ion sources for established and innovative applications in science, medicine and industry.

MEMS chips get metatlenses

February 20, 2018

Lens technologies have advanced across all scales, from digital cameras and high bandwidth in fiber optics to the LIGO lab instruments. Now, a new lens technology that could be produced using standard computer-chip technology ...

Using organoids to understand how the brain wrinkles

February 20, 2018

A team of researchers working at the Weizmann Institute of Science has found that organoids can be used to better understand how the human brain wrinkles as it develops. In their paper published in the journal Nature Physics, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.