Researchers Reveal New Insights into the Surface of Silicon Semiconductors

June 16, 2006
Researchers Reveal New Insights into the Surface of Silicon Semiconductors
Measured band structure of the Si(111)-7x7 surface. The shape of the upper bands (bright area at the top) shows typical indications of electron-phonon interaction, the same machanism that causes conventional superconductivity.

"Smaller. Faster. Wildly complex." This could easily be the motto for semiconductors—the materials that, among lots of other advances in electronics, allow cell phones to continuously shrink in size while increasing the number of their mind-boggling functions. While exceptionally tiny, semiconductors possess the ability to enable a multitude of complex functions, making them an invaluable ingredient in electronics technology. But, while the computer age is in full bloom, knowledge of semiconductor nanostructures is still relatively young; and research seeking to answer essential and sometimes-basic materials questions is occurring at breakneck speed.

As part of this race to understand semiconductors better, a team of researchers from the University of Wisconsin-Madison has revealed valuable information about Silicon and it's surface structure. In particular, the researchers, who did much of their work at the Synchrotron Radiation Center, examined the inimitable 7 x 7 surface structure of Si(111), the most stable surface of silicon.

SRC's Scienta Energy Analyzer
SRC's Scienta Energy Analyzer

"Surfaces and interfaces dominate in today's silicon devices, since the surface to volume ratio goes up in small structures. These two-dimensional structures are difficult to study, and the SRC work explores an aspect that has remained unexplored on semiconductors so far," explains one of the researchers, Ingo Barke, who, along with his collaborators at University of Wisconsin - Madison, published the results of their recent work in June 2, 2006 issue of Physical Review Letters.

"Our results reveal a very unusual surface band structure, which can be best explained by a mechanism called 'electron-phonon interaction,'" Barke continues. "Phonons are vibrations of the atoms, which are surrounded by electrons. By shaking the surface atoms the orbiting electrons 'feel' these vibrations and change their movement in a characteristic way. Our work connects two intensively studied fields: electron-phonon interaction which causes conventional superconductivity, and semiconductor surfaces which are of great importance for electronic devices and semiconductor technology."

While similar research has been done on metal surfaces, the current study is the first example of such examination on a semiconductor surface. Obviously, the researchers realize that studying the microscopic surface of silicon may seem rather esoteric. But, history has shown that these interesting jumps in basic knowledge about materials such as semiconductors can have significant practical impacts down the road—and this is particularly true in the case of silicon, which itself has become so inextricably important in modern society that it is credited with its own "silicon age."

"Electron-phonon interaction itself is of great scientific and practical interest because it is the key mechanism for conventional superconductivity," Barke notes while stressing that this knowledge may lead to the possibility of producing 'designer superconductors.'

"The ultimate goal lies in the possibility of tailoring," concludes Barke.

Reference: Barke, I., Zheng, F., Konicek, A.R., Hatch, R.C., and Himpsel, F.J. Electron-Phonon Interaction at the Si(111)-7 X 7 Surface. Physical Review Letters. 96, 216801 (2006).

Source: University of Wisconsin - Madison, by John Morgan

Explore further: Well-known names surface as possible Uber CEO candidates

Related Stories

Quantum thermometer or optical refrigerator?

June 22, 2017

In an arranged marriage of optics and mechanics, physicists have created microscopic structural beams that have a variety of powerful uses when light strikes them. Able to operate in ordinary, room-temperature environments, ...

Scientists uncover origins of the Sun's swirling spicules

June 22, 2017

At any given moment, as many as 10 million wild jets of solar material burst from the sun's surface. They erupt as fast as 60 miles per second, and can reach lengths of 6,000 miles before collapsing. These are spicules, and ...

Recommended for you

Chemists create 3-D printed graphene foam

June 21, 2017

Nanotechnologists from Rice University and China's Tianjin University have used 3-D laser printing to fabricate centimeter-sized objects of atomically thin graphene.

Plant inspiration could lead to flexible electronics

June 21, 2017

Versatile, light-weight materials that are both strong and resilient are crucial for the development of flexible electronics, such as bendable tablets and wearable sensors. Aerogels are good candidates for such applications, ...

Neuron transistor behaves like a brain neuron

June 20, 2017

(Phys.org)—Researchers have built a new type of "neuron transistor"—a transistor that behaves like a neuron in a living brain. These devices could form the building blocks of neuromorphic hardware that may offer unprecedented ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.