New Evidence of Early Glacial Development, History of Antarctic Ice Sheet Revised

May 5, 2006
New Evidence of Early Glacial Development, History of Antarctic Ice Sheet Revised
Sediments characteristic of deposition by glacial ice near the Eocene-Oligocene boundary on Seymour Island. Credit: Linda C. Ivany

Syracuse University Professors Linda C. Ivany and Scott D. Samson along with colleagues at the University of Leuven in Belgium and Hamilton College have found evidence that expands our understanding about how the ice sheet covering most of Antarctica really began. Their findings were published in the article “Evidence for an Earliest Oligocene Ice Sheet on the Antarctic Penninsula,” in the May 2006 issue of the journal, Geology. The research was supported by funding from the National Science Foundation’s Office of Polar Programs.

“One of the most fundamental climate shifts that this planet has undergone since the events that precipitated the extinction of the dinosaurs is the so-called
‘greenhouse to icehouse transition’—the time when Earth went from having virtually no ice on it at all to one with a more or less permanent ice sheet covering Antarctica,” says Ivany, professor of earth science in The College of Arts and Sciences at SU and principal investigator on the project. “This happened about 34 million years ago, and is marked by dramatic changes in the chemistry of the oceans and the appearance of ‘ice rafted debris’ in ocean sediments around Antarctica, carried there by icebergs from land that floated out and melted far from the continent, releasing the sand and rock that had been frozen into them.”

Though scientists are quite sure that glaciers grew on Antarctica at this time, it is not clear where that ice was, nor how much of it there was initially. This is because most of the continent is now under the ice, and it is difficult to find places where sediments are exposed that record this interval of time.

Until now, the assumption has been that glaciers were confined to the eastern part of Antarctica, where the biggest ice sheet is today. Ivany’s research team found evidence that glaciers may have covered a much bigger area at the early stages of this transition. Sediments on Seymour Island, off the northern tip of the Antarctic Peninsula, have been dated to just this time, and show features characteristic of deposition by glacial ice. Because this island is at the far northern reaches of the Peninsula, in western Antarctica, they suggest that the initial pulse of glaciation was far more extensive than originally suspected.

Scientists believe that growth of the Antarctic ice sheet was initiated by a drop in greenhouse gas concentrations in the atmosphere in combination with a change in ocean circulation caused by South America pulling away from Antarctica. The climatic response to these gradual changes now appears to be even bigger than previously thought, showing that Earth cooled fast enough to allow the growth of ice on the entire continent all at once.

Ivany’s team concludes that because Earth’s climate system is capable of shifting this rapidly and dramatically to such a new and different state, their discovery may provide an insight into how things could change in the future if we continue to alter our environment.

Source: Syracuse University

Explore further: Warm waters melting Antarctic ice shelves may have appeared for the first time in over 7,000 years

Related Stories

Secrets of hidden ice canyons revealed

October 11, 2017

We are all aware that Antarctica's ice shelves are thinning, but recently scientists have also discovered huge canyons cutting through the underbelly of these shelves, potentially making them even more fragile. Thanks to ...

The wind sublimates snowflakes in Antarctica

September 25, 2017

Researchers have observed and characterized a weather process that was not previously known to occur in Antarctica's coastal regions. It turns out that the katabatic winds that blow from the interior to the margins of the ...

Pop-up robots enable extreme terrain science

September 26, 2017

A NASA-led team is designing an extremely compact origami rover for new extreme terrain applications in both the planetary and Earth science domains. PUFFERs (Pop-Up Flat Folding Explorer Robots) utilize a folding printed ...

Recommended for you

Mountain glaciers shrinking across the West

October 22, 2017

Until recently, glaciers in the United States have been measured in two ways: placing stakes in the snow, as federal scientists have done each year since 1957 at South Cascade Glacier in Washington state; or tracking glacier ...

Carbon coating gives biochar its garden-greening power

October 20, 2017

For more than 100 years, biochar, a carbon-rich, charcoal-like substance made from oxygen-deprived plant or other organic matter, has both delighted and puzzled scientists. As a soil additive, biochar can store carbon and ...

Cool roofs have water saving benefits too

October 20, 2017

The energy and climate benefits of cool roofs have been well established: By reflecting rather than absorbing the sun's energy, light-colored roofs keep buildings, cities, and even the entire planet cooler. Now a new study ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.