Physics turns a corner with three-point turn atoms

January 18, 2006
Physics turns a corner with three-point turn atoms
Turning point: A single atomic ion is shuttled back and forth around a corner. Light scattering makes the corner electrode visible.

You may think making a three-point turn in your car is easy, but how about doing the same with a single-charged atom?

That's what scientists have achieved for the first time, marking a major breakthrough for physics and a first step towards creating the complicated labyrinth of 'atomic motorways' needed for a quantum computer.

The microscopic motoring manoeuvre was performed by University of Sussex physicist Dr Winfried Hensinger with colleagues at the University of Michigan, USA. Details of the experiment are published in the January 2006 issue of the journal Applied Physics Letters.

The ability to shuttle ions (charged atoms) in a controlled environment is seen as an important demonstration of how to harness the seemingly magical properties of atoms. This development will help scientists to store and analyse the vast quantities of data used in highly sophisticated calculations - in super-fast quantum computers.

To be able to build this kind of computer, scientists need to trap ions - no mean feat in itself - then control their movements in a sophisticated labyrinth of 'atomic roads'. Such a process has previously been carried out for single ions along one line, but Dr Hensinger (now Lecturer in Atomic Molecular and Optical Physics at Sussex), and the Michigan team have shown how they can make atoms turn a corner.

Keen for more driving pleasure, they even managed to switch two ions around by having them perform a three-point turn. This will hopefully allow eventually for the mass-manipulation of atoms, vital for the operation of a quantum computer.

Ion traps are made from micro-fabricated electrodes, in which ions are controlled by electric fields in an ultra-high vacuum chamber. The new construction, the first two-dimensional ion trap array, is the most sophisticated yet. The ions are steered inside a T-junction that is laser micro-machined in thin layers of a material called alumina.

Dr Hensinger says: "This is big news because it is very difficult to trap atoms, let alone manipulate them in transit. This and other recent developments show that it should be possible to build a quantum computer with trapped ions. Now we can take two atoms and swap them around, which mathematically corresponds to a fundamental requirement for a quantum computer. This is the prerequisite to go from something academically interesting to something useful. This is a quantum leap in the development of the quantum computer."

Quantum technology could be used in the future to understand chemical reactions, create medicines, ultra-fast communications systems and seemingly impossible simulations, such as the creation of our universe.

Source: University of Sussex

Explore further: New dynamic probes for ions interacting with biomolecules

Related Stories

New dynamic probes for ions interacting with biomolecules

January 11, 2019

Pairs of negatively charged phosphate groups and positive magnesium ions represent a key structural feature of DNA and RNA embedded in water. Vibrations of phosphate groups have now been established as selective probes of ...

Next up: Ultracold simulators of super-dense stars

January 3, 2019

Rice University physicists have created the world's first laser-cooled neutral plasma, completing a 20-year quest that sets the stage for simulators that re-create exotic states of matter found inside Jupiter and white dwarf ...

Predicting the properties of a new class of glasses

December 20, 2018

ZIF glasses, a new family of glass, could combine the transparency of silicate glass with the nonbrittle quality of metallic glass, according to researchers at Penn State and Cambridge University in the U.K.

Best of Last Year—The top Phys.org articles of 2018

December 21, 2018

It was another great year for science, and physics was front and center, as a team at the University of Oxford announced that they may have solved one of the biggest mysteries in modern physics. They came up with a new theory ...

Recommended for you

Bright colors produced by laser heating

January 15, 2019

Most of the colors on today's paper and fabric are made using dyes or pigments. But colors can also be produced by modifying a material's surface at the nanoscale, causing the surface to reflect or scatter different frequencies ...

Big genome found in tiny forest defoliator

January 15, 2019

The European gypsy moth (EGM) is perhaps the country's most famous invasive insect—a nonnative species accidentally introduced to North America in the 1860s when a few escaped from a breeding experiment in suburban Boston. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.