Migratory Songbirds Have a Specialized Night-Vision Brain Area

June 8, 2005

Research shows special molecules help the birds navigate at night

Neurobiologists have discovered a specialized night-vision brain area in night-migratory songbirds. They believe the area might enable the birds to navigate by the stars, and to visually detect the earth's magnetic field through photoreceptor molecules, whose light-sensitivity is modulated by the field.

The researchers published their findings May 23, 2005, in the early online edition of the Proceedings of the National Academy of Sciences. The collaboration was led by Henrik Mouritsen of the University of Oldenberg in Germany and Erich Jarvis of the Duke University Medical Center. Other co-authors were Gesa Feenders and Miriam Liedvogel in Mouritsen's laboratory and Kazuhiro Wada in Jarvis's laboratory. The research was supported by the VolkswagenStiftung to Mouritsen and the National Science Foundation's Waterman Award to Jarvis.

To migrate successfully over thousands of miles at night, night-migratory birds need to see where they fly, as well as navigate by stars and the earth's magnetic field. Surprisingly, Jarvis said, recent scientific evidence has suggested that birds have specialized molecules in their visual system that translate magnetic compass information into visual patterns. Thus, , the researchers hypothesized that night migratory birds would need a specialized night-vision brain area.

"There was no evidence of such a specialized region in night migratory birds before we began this research," Jarvis said.

In their study, the researchers compared two species of night-migratory songbirds -- garden warblers and European robins -- with two non-migratory songbirds -- zebra finches and canaries.

Using a transparent cylindrical cage in Mouritsen's laboratory, they first accustomed the birds to the illumination equivalent of moonlight. They waited until the birds were sitting quietly to eliminate brain activity from movement. The researchers then quickly preserved the birds' brains, and in Jarvis's laboratory analyzed the brain structures for the active expression of two genes called ZENK and c-fos that signal activity in a particular brain region.

The researchers found that the night-migratory species showed strikingly high activity in a particular cluster of cells located adjacent to a known visual pathway. According to Jarvis, what excited the researchers was that the area, which they named Cluster N, was not active in the migratory birds during the daytime. Furthermore, non-migratory songbirds did not show strong activation in the Cluster N even under moonlight conditions.

To determine whether the brain cluster is really specialized for night-vision, the researchers performed the same gene expression analysis on the night-migratory songbird species with the birds' eyes covered. The researchers found that blocking night-time vision dramatically reduced gene activity in cluster N.

"This result confirmed that night-migratory birds seem to have a brain area specifically adapted for seeing during their night-time flight," Jarvis said. The researchers suspect that the newly discovered brain region could be involved in processing and integrating light-dependent magnetic compass information and star compass information; and thus may be responsible for the impressive navigational abilities of birds migrating during the night. In future studies, Jarvis, Mouritsen and their colleagues plan to test this hypothesis in more detail, they said.

Source: Duke University

Explore further: Human speech, jazz and whale song

Related Stories

Human speech, jazz and whale song

October 13, 2017

Jazz musicians riffing with each other, humans talking to each other and pods of killer whales all have interactive conversations that are remarkably similar to each other, new research reveals.

Modeling brain connections to understand Parkinson's disease

September 27, 2017

Some 10 million people worldwide suffer from Parkinson's disease—a debilitating condition that causes degeneration of brain nerve cells that control movement. The exact reasons for this degeneration remain unknown. A study ...

Pigeons better at multitasking than humans: study

September 26, 2017

Pigeons are capable of switching between two tasks as quickly as humans – and even more quickly in certain situations. These are the findings of biopsychologists who had performed the same behavioural experiments to test ...

Engineers identify key to albatross' marathon flight

October 11, 2017

The albatross is one of the most efficient travelers in the animal world. One species, the wandering albatross, can fly nearly 500 miles in a single day, with just an occasional flap of its wings. The birds use their formidable ...

Clues to ancient past—baby mummy, dinosaur skulls scanned

September 22, 2017

The mummified remains of a 7-month-old baby boy and pieces of skull from two teenage Triceratops underwent computed tomography (CT) scans Saturday, Sept. 16, at Washington University School of Medicine in St. Louis, in hopes ...

Pheasant roadkill peaks in autumn and late winter

October 3, 2017

Chickens' motives for crossing the road are often questioned - but pheasants should probably avoid it altogether, new research suggests. Researchers from the universities of Exeter and Cardiff compared roadkill figures from ...

Recommended for you

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.