'All-optical' switch could advance light-based telecommunications

April 28, 2005

Duke University physicists have developed a switching technique that uses a very weak beam of light to control a much stronger beam. The achievement could make optical telecommunications devices perform far more efficiently, and perhaps also aid in the development of futuristic quantum communications devices, the scientists said.

"What's important here is that this is an 'all-optical' switch, using only light, with a weak beam affecting a strong one," said physics professor Daniel Gauthier, the Duke team leader.

Such a switching technique could improve today's telecommunications switching arrays that must repeatedly and inefficiently convert light to electricity and then back to light -- a method especially impractical for very high speed telecommunications networks, Gauthier said in an interview.

Until now, Gauthier said, scientists have primarily demonstrated switching techniques that use stronger light beams to control weaker ones. "And that's not very useful in a telecommunications networking device because you would need a lot of energy to switch a tiny amount," he said.

Gauthier and other team members will describe their findings in the Friday, April 29, 2005, issue of the research journal Science, in a report whose first author is Gauthier's graduate student Andrew Dawes. Additional co-authors are Gauthier's post-doctoral research associate Lucas Illing and former Duke physics undergraduate Susan Clark, who is now in graduate study at Stanford University.

Their research is funded by the Defense Advance Research Projects Agency, the National Science Foundation and the U.S. Army Research Office.

The Duke team's switching system makes use of an instability that Gauthier initially studied in graduate school.

The scientists point two identical beams of laser light at each other while both opposing beams also pass through a warmed rubidium vapor trapped in a glass vacuum tube.

Normally, such counter pointed laser light beams would just unresponsively pass through each other, Gauthier said. But this laser light is of just the right infrared wavelength to be affected by the natural excitations of the rubidium atoms.

This interaction between the light and the rubidium atoms triggers an instability that creates two additional beams. When these secondary beams are projected on a screen, they form an optical pattern. That pattern, consisting of a pair of spots, can be rotated to a new alignment when a third "switching" beam is passed through the rubidium vapor.

Crucially, the strength of the switching beam is also much weaker than the original beams. According to their Science report, the Duke physicists have been able to operate their switch with beams up to 6,500 times weaker than the light in the optical pattern.

"So the idea is, we've got beams that are pointing in one direction and might be going down to a particular place in a network," Gauthier said. "Then, by putting in a very weak beam, we can rotate those original beams to a new orientation. So the spots could then go to different channels in a network system, for example."

The idea of such a weak signal controlling a stronger one "makes the switch 'cascadable,'" Gauthier said. "That's what you need to be able to have the output of one switch affect the input of another switch downstream. No other group we know of has demonstrated this in an all-optical switch."

So far, the Duke group has used weak switching beams consisting of as few as 2,700 individual particles of light, known as photons.

Their report in Science also suggests possible techniques for using switching beams as weak as single photons, perhaps by reducing the size of the laser beams or modifying the atomic vapor.

"There are some applications in quantum information where you would like to have a switch that could be actuated with a single photon," Gauthier said. Quantum computing and telecommunications refers to systems that make use of the quirky features of quantum mechanics to solve otherwise intractable computational problems and provide secure communications channels.

Those quantum effects only manifest themselves in systems where individual photons, electrons or atoms can be manipulated.

Source: Duke University

Explore further: Laser heating hits the spot

Related Stories

Laser heating hits the spot

February 22, 2017

A method for accurately measuring the thermomagnetic properties of heat-assisted magnetic recording (HAMR) media reveals what the minimum bit size and ultimate data density might be for this next generation storage technology.

Background suppression for super-resolution light microscopy

February 1, 2017

Researchers of Karlsruhe Institute of Technology (KIT) have developed a new fluorescence microscopy method: STEDD (Stimulation Emission Double Depletion) nanoscopy produces images of highest resolution with suppressed background. ...

Infrared links could simplify data center communications

January 31, 2017

Data centers are the central point of many, if not most, information systems today, but the masses of wires interconnecting the servers and piled high on racks begins to resemble last year's tangled Christmas-tree lights ...

'Field patterns' as a new mathematical object

February 14, 2017

University of Utah mathematicians propose a theoretical framework to understand how waves and other disturbances move through materials in conditions that vary in both space and time. The theory, called "field patterns," ...

Recommended for you

ZTE launches world's first 5G-ready smartphone

February 26, 2017

Chinese telecoms giant ZTE unveiled Sunday what it said is the world's first smartphone compatible with the lightening-fast 5G mobile internet service that networks expect to have up and running by 2020.

Stargazers applaud as moon eclipses sun

February 26, 2017

Stargazers applauded as they were plunged into darkness Sunday when the moon passed in front of the sun in a spectacular "ring of fire" eclipse.

Canada conservationist warns of 'cyber poaching'

February 25, 2017

Photographers, poachers and eco-tour operators are in the crosshairs of a Canadian conservationist who warns that tracking tags are being hacked and misused to harass and hunt endangered animals.

Polymer additive could revolutionize plastics recycling

February 24, 2017

When Geoffrey Coates, the Tisch University Professor of Chemistry and Chemical Biology, gives a talk about plastics and recycling, he usually opens with this question: What percentage of the 78 million tons of plastic used ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.