Custom-Sized Microlenses

August 30, 2004

Optical components have joined the trend towards miniaturization. There have, however, been no methods available thus far to produce custom-sized glass lenses. A new process now enables the low-cost, high-volume manufacture of microlenses with extreme dimensions.


Miniaturization is a big issue these days. Micro-optical component manufacturers are increasingly being called upon to produce smaller and smaller lenses. The telecommunications industry, for example, uses them to couple optical signals with multi-fiber connectors. Tiny lenses used in fingerprint sensors for security applications such as checking cards or automobile anti-theft systems are also in high demand. Although these tiny components are typically made from plastic materials, the use of borosilicate glass is on the rise. This type of glass is highly scratch resistant, physically stable in shape and mechanically robust.

However, structuring glass in microtechnical processes has its limits. Currently available methods restrict the structural height of plasma-etched glass. Optical properties such as focal length can be customized to the particular application only through the selection of the material or the curvature of the lens. And if the material has been pre-selected, the only option to create the required optical properties is to produce lenses of various shapes and heights. Vacuum-based plasma etching is a costly, time-consuming process. Gases are fed into a vacuum chamber. Having changed into an ionized plasmas, they gradually but slowly erode the glass parts.

Researchers at the Fraunhofer Institute for Silicate Technologies ISIT have come up with a novel process that offers decisive advantages. “With the glass flow process, we can reduce production costs to ten percent of current values,” emphasizes Peter Merz from ISIT. “Moreover, we can achieve 1:1 height to thickness ratios.” This means that a 0.1mm wide lens can have a height of up to 100 micrometers, about the diameter of a human hair. In comparison, plasma etching attains only one-fifth of this value.

Merz explains the viscous deformation process this way: “We begin with a silicon wafer preform. Using a rapid etching procedure, we create tiny depressions in the silicon that conform to the desired lens diameter. A substrate made from borosilicate glass is then hermetically sealed to the silicon preform. Under high temperature, the glass then slumps into the silicon cavity and forms a mould.” Temporal regulation of the temperature determines the topography and height of the lens. The contactless forming process results in lenses with very low surface roughness, hence they require no additional finishing.

Source: Fraunhofer-Gesellschaft

Explore further: Brittle starfish shows how to make tough ceramics

Related Stories

Brittle starfish shows how to make tough ceramics

December 8, 2017

An international team lead by researchers at Technion-Israel Institute of Technology, together with colleagues from the European Synchrotron, Grenoble, France, have discovered how an echinoderm called Ophiocoma wendtii, known ...

Researchers develop flexible, stretchable photonic devices

November 8, 2017

Researchers at MIT and several other institutions have developed a method for making photonic devices—similar to electronic devices but based on light rather than electricity—that can bend and stretch without damage. ...

Imaging probe printed onto tip of optical fiber

October 26, 2017

Combining speed with incredible precision, a team of Molecular Foundry scientists and industry users developed a way to print extremely small devices on the tip of a glass fiber as thin as a human hair. These tiny devices ...

Recommended for you

Complete design of a silicon quantum computer chip unveiled

December 15, 2017

Research teams all over the world are exploring different ways to design a working computing chip that can integrate quantum interactions. Now, UNSW engineers believe they have cracked the problem, reimagining the silicon ...

A not-quite-random walk demystifies the algorithm

December 15, 2017

The algorithm is having a cultural moment. Originally a math and computer science term, algorithms are now used to account for everything from military drone strikes and financial market forecasts to Google search results.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.