ASTROPHYSICIST HELPS CRACK A BLACK HOLE MYSTERY: ENERGY JETS

August 5, 2004

With almost limitless gravitational power, black holes are supposed to gulp everything that comes near them, even weightless light photons.

So astronomers have long sought explanations for observations that black holes emit high-energy particles, often through visually impressive jets that unfurl from the black holes’ poles in thick, tornado-like coils. Now, in a paper published in this month’s edition of the Astrophysical Journal, a University of Florida researcher has bolstered and expanded a longtime theory about how and why these photons and electrons escape powerful gape of black holes, caused by the collapse of stars.

“My calculations may solve the mystery as to where the large number of high-energy observed electrons originate from,” said Reva Kay Williams, a UF courtesy postdoctoral associate. “My calculations also help explain some of our observations, such as why many (black hole) jets are observed to be uneven, or one-sided.”

Williams’ research is the first to prove the Penrose mechanism, a 35-year-old theory named for its author, Oxford University mathematics and physics professor Roger Penrose. It also provides a new, physical explanation for the odd appearance of many of the jets, which some astronomers believe was merely the result of an optical illusion.

Fernando de Felice, a physicist at the University of Padova in Italy, said Williams’ findings represent an important contribution to the field.

“Until recently, it was believed that the Penrose mechanism was not very efficient for generating energetic particles, but Dr. Williams’ detailed and perseverant work showed that this may not be true and, to the contrary, that it may be relevant to high-energy astrophysics,” he said.

Penrose’s theory says the rotational energy of a spinning black hole powers and lifts particles large distances away. Williams’ research, based in part on computer modeling, shows these particles appear to be created at the part of the hole where gravity is so powerful it bends light into a circle around the hole.

Her calculations also suggest the one-sided appearance of the jets is the result of the black holes’ gravitational dragging of space and time near their cores - not just, as some suggested, a consequence of the observer’s position relative to the jets. “The interest in Dr. Williams’ work is that it has enriched the possibilities of having energy output in active cosmic sources,” de Felice said.

Source: University of Florida

Explore further: Astronomers see black hole raging red

Related Stories

Astronomers see black hole raging red

March 17, 2016

Violent red flashes, lasting just fractions of a second, have been observed during one of the brightest black hole outbursts in recent years.

Recommended for you

Spider-web 'labyrinths' may help reduce noise pollution

October 17, 2017

(Phys.org)—Researchers have demonstrated that the geometry of a natural spider web can be used to design new structures that address one of the biggest challenges in sound control: reducing low-frequency noise, which is ...

In search of the ninth planet

October 17, 2017

A University of Michigan doctoral student has logged two pieces of evidence that may support the existence of a planet that could be part of our solar system, beyond Neptune.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.