Explained: Quark gluon plasma

For a few millionths of a second after the Big Bang, the universe consisted of a hot soup of elementary particles called quarks and gluons. A few microseconds later, those particles began cooling to form protons and neutrons, ...

Strange Antihyperparticle Created

(PhysOrg.com) -- Physicists, including nine from UC Davis, working at the U.S. Department of Energy's Brookhaven National Laboratory recently created some strange matter not seen since just after the Big Bang -- an "antihypertriton" ...

How does the proton get its spin?

(PhysOrg.com) -- At a meeting this week of the American Physical Society in Washington, MIT Associate Professor of Physics Bernd Surrow reported on new results from the STAR experiment at the Relativistic Heavy Ion Collider ...

'Bubbles' of Broken Symmetry in Quark Soup at RHIC (w/ Video)

Scientists at the Relativistic Heavy Ion Collider (RHIC), a 2.4-mile-circumference particle accelerator at the U.S. DOE's Brookhaven National Laboratory, report the first hints of profound symmetry transformations in the ...

'Perfect' Liquid Hot Enough to be Quark Soup (w/ Video)

Recent analyses from the Relativistic Heavy Ion Collider (RHIC), a 2.4-mile-circumference "atom smasher" at the U.S. DOE's Brookhaven National Laboratory, establish that collisions of gold ions traveling at nearly the speed ...

Jetting into the Quark-Gluon Plasma

After the quark-gluon plasma filled the universe for a few millionths of a second after the big bang, it was over 13 billion years until experimenters managed to recreate the extraordinarily hot, dense medium on Earth. The ...

Not all jets radiate equally in quark-gluon plasma, study finds

Studying nuclear matter under extreme conditions allows scientists to better understand how the universe might have looked right after its creation. Scientists at the Large Hadron Collider achieve the conditions for recreating ...

page 4 from 15