X-ray laser FLASH reveals fast demagnetisation process

(Phys.org)—Scientists from TU Berlin, DESY and the University of Paris discovered a surprising effect in the demagnetisation of ferromagnetic materials at DESY's free-electron laser FLASH. The team of researchers headed ...

New method for imaging defects in magnetic nanodevices

(Phys.org)—A team of researchers from the NIST Center for Nanoscale Science and Technology, the Royal Institute of Technology, Stockholm, and the University of Maryland have demonstrated a microscopy method to identify ...

A new probe for spintronics

The spin Hall effect (SHE) enables us to create spin current in  non-magnetic materials without using ferromagnetic materials. It is a crucial element in the central idea behind spintronics, that of manipulating currents ...

Driving an electron spin vortex "Skyrmion" with a microcurrent

RIKEN and the National Institute for Materials Science (NIMS) have succeeded in forming a skyrmion crystal in which electron spin is aligned in a vortex shape in a microdevice using the helimagnet FeGe. The skyrmion crystal ...

Higgs excitations near absolute zero

(Phys.org) -- A collaboration of physicists from Max Planck Institute of Quantum Optics, LMU, Harvard and Caltech detect Higgs-type excitations in a low-dimensional system of ultracold atoms at the transition between different ...

An unlikely route to ferroelectricity

(Phys.org) -- Ferroelectricity, which was first observed in the 1940s, is an interesting phenomenon involving the spontaneous (non-induced) formation of charge polarization (separation of charge) in certain materials. This ...

Ferroelectric oxides do the twist

(Phys.org) -- Some materials, by their nature, do what we want them to do -- notably, the ubiquitous, semiconducting silicon found in almost every electronic device. But sometimes, naturally occurring materials need a little ...

page 10 from 14