Gravitational wave search no hum drum hunt

The hunt for the never before heard 'hum' of gravitational waves caused by mysterious neutron stars has just got a lot easier, thanks to an international team of researchers.

Deeper insight into Higgs boson production using W bosons

Discovering the Higgs boson in 2012 was only the start. Physicists immediately began measuring its properties, an investigation that is still ongoing as they try to unravel if the Higgs mechanism is realized in nature as ...

Why precision luminosity measurements matter

The ATLAS and CMS experiments at the Large Hadron Collider (LHC) have performed luminosity measurements with spectacular precision. A recent physics briefing from CMS complements earlier ATLAS results and shows that by combining ...

Investigating heavy quark physics with the LHCb experiment

A new review published in The European Physical Journal H by Clara Matteuzzi, Research Director at the National Institute for Nuclear Physics (INFN) and former tenured professor at the University of Milan, and her colleagues, ...

Under the radar: Searching for stealthy supersymmetry

The standard model of particle physics encapsulates our current knowledge of elementary particles and their interactions. The standard model is not complete; for example, it does not describe observations such as gravity, ...

Go ahead for dark matter experiment

Neutrinos are the shyest elementary particles known to exist. At this moment billions of them are shooting through each square centimeter of your body.

ATLAS searches for pairs of Higgs bosons in a rare particle decay

Since the Higgs boson was discovered in 2012, scientists at the Large Hadron Collider (LHC) have been studying the properties of this very special particle and its relation to the fundamental mechanism essential to the generation ...

page 16 from 40