'Magnet training' at the LHC

When the Large Hadron Collider (LHC) begins Run 3 next year, operators aim to increase the energy of the proton beams to an unprecedented 6.8 TeV. This means the thousands of superconducting magnets, whose fields direct the ...

Collisions of light produce matter/antimatter from pure energy

Scientists studying particle collisions at the Relativistic Heavy Ion Collider (RHIC)—a U.S. Department of Energy Office of Science user facility for nuclear physics research at DOE's Brookhaven National Laboratory—have ...

Particle physicists study 'little bangs' at the ATLAS experiment

A new result from the ATLAS Collaboration at CERN studies the interactions of photons—particles of light—with lead nuclei at the Large Hadron Collider (LHC). Using new data collection techniques, physicists revealed an ...

A colorful look at fast-flying particles

The strong nuclear force is one of the four fundamental forces of nature, along with the electromagnetic, gravitational and weak nuclear forces. The branch of particle physics that deals with the strong nuclear force is called ...

page 15 from 40