GLAST: The Challenge of Too Much New Data

May 22, 2007

The astrophysics community enthusiastically awaits the upcoming launch of the Gamma-ray Large Area Space Telescope (GLAST), the latest and most powerful gamma-ray telescope. But interpreting the huge amount of new data that GLAST will collect may prove difficult.

Until now, existing instruments have allowed astrophysicists to detect about 300 possible sources of gamma-rays in the universe, and scientists have had to analyze and classify these sources one by one. GLAST's increased sensitivity, 30 to 100 times greater than that of its predecessors, will allow the telescope to potentially detect thousands of new sources of gamma rays.

"We'll have a hard time identifying them," says Stanford Physicist Olaf Reimer. "We can't apply the individual approach for thousands of sources anymore. Researchers took 20 years to identify Geminga, the radio-quiet gamma ray pulsar, but we cannot spend 20 years on a single source again."

To address the scientific challenges GLAST will raise, Reimer and several colleagues organized a conference called "The Multi-messenger Approach to High-energy Gamma Ray Sources," which was held last July in Barcelona. This conference was the third in a series exclusively devoted to the problem of gamma-ray source identification. In a book to be published this June, based on the conference, Reimer suggests combining the established identification technique with a population-based statistical approach.

"The idea is to establish the characteristics of the populations hiding in the wells of new data," Reimer says. Then, researchers could proceed to single out the most appropriate candidates for new gamma-ray sources among those populations.

The problem with identifying new populations of gamma-ray sources is that astrophysicists do not know how the sources behave. "We know that active galactic nuclei occasionally flare, pulsars pulse, binaries have characteristic orbits… these are clear signatures," Reimer says. "But for new galactic phenomena, we don't have that knowledge."

Reimer admits this new scientific problem is tough. "But we have to address it, because you can only make science if you know what you're dealing with in the sky," he says.

Source: by María José Viñas, SLAC

Explore further: Astronomers find new details about star formation in ancient galaxy protoclusters

Related Stories

Frontier science in ocean-going lab

14 minutes ago

Oceanographer Dr Martina Doblin is preparing for one of the most significant explorations of her career. In early June, a mobile laboratory known as the Micro-CSI will leave from Brisbane aboard Australia's ...

How to alert drivers to fatigue

34 minutes ago

Frank Black is a professional truck driver, having clocked up nearly three decades travelling the breadth of Australia. But every time he gets into his cab, Black thinks about driver fatigue; over the years ...

Recommended for you

Black hole hunters tackle a cosmic conundrum

16 hours ago

Dartmouth astrophysicists and their colleagues have not only proven that a supermassive black hole exists in a place where it isn't supposed to be, but in doing so have opened a new door to what things were ...

Image: Thor's Helmet nebula in the X-ray spectrum

23 hours ago

This brightly coloured scene shows a giant cloud of glowing gas and dust known as NGC 2359. This is also dubbed the Thor's Helmet nebula, due to the arching arms of gas stemming from the central bulge and ...

Cosmologically complicating dust

Apr 20, 2015

The universe was created 13.7 billion years ago in a blaze of light: the big bang. Roughly 380,000 years later, after matter (mostly hydrogen) had cooled enough for neutral atoms to form, light was able to ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.