Nanocomposite labeled cancer cells can be targeted and destroyed using lasers

May 20, 2007

A nanocomposite particle can be constructed so that it has a mix of properties that would not otherwise happen in nature. By combining an organic matrix with metallic clusters that can absorb light, it is possible to incorporate such particles into cells and then destroy those targeted cells with a laser.

In a presentation at the NSTI Nanotech 2007 Conference, researchers describe work conducted at the NanoBiotechnology Center, Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY and the University of Michigan, Ann Arbor, MI, regarding the creation and characterization of a dendrimer nanocomposite (DNC) matrix containing silver clusters that can be used to target and destroy melanoma cancer cells.

Composite NanoDevices (CNDs), are an emerging class of hybrid nanoparticulate materials. CNDs are made from dendrimer-based polymers, for example from poly(amidoamine) [(PAMAMs)].

To visualize the device, Dr. Lajos P. Balogh says simply think of nanoscale, dense, but soft "tumbleweed," where clusters of inorganic materials (such as silver) can be trapped inside. The CND "tumbleweed" device can be made in discrete sizes, carry different electric charges and can encapsulate different materials inside. This design offers researchers a wider choice of size, surface functionality and payload than traditional small in vivo devices where the agent is conjugated directly to the surface.

A laser can be used to kill cells indiscriminately, but it is really a blunt instrument. High powered lasers do so much damage that the tissue becomes opaque to further light. Yet, lower-powered lasers do not deliver enough energy to kill cells. By labeling cells with CNDs, light absorption can be selectively and locally enhanced wherever composite nanodevices are present. Irradiation of the mix of labeled and unlabeled cells by laser light, causes tiny bubbles to form that disrupt and damage the labeled cells, but leave unlabeled cells unaffected. This technology holds promise as an alternative therapy for cancer patients.

According to Dr. Balogh, "The DNC is a multi-functional platform. Because it can carry multiple agents inside, yet present a simple outer surface to the body, it can be programmed to deliver those agents to a particular organ or tissue."

Source: Elsevier Health Sciences

Explore further: Ultra-small block 'M' illustrates big ideas in drug delivery

add to favorites email to friend print save as pdf

Related Stories

Lab-on-a-chip to study single cells

Feb 13, 2015

Scientists at EPFL have developed a new lab-on-a-chip technique to analyze single cells from entire population. The new method, which uses beads and microfluidics can change the way we study mixed populations ...

Recommended for you

Semiconductor miniaturisation with 2D nanolattices

Feb 26, 2015

A European research project has made an important step towards the further miniaturisation of nanoelectronics, using a highly-promising new material called silicene. Its goal: to make devices of the future ...

Ultra-small block 'M' illustrates big ideas in drug delivery

Feb 26, 2015

By making what might be the world's smallest three-dimensional unofficial Block "M," University of Michigan researchers have demonstrated a nanoparticle manufacturing process capable of producing multilayered, precise shapes.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.