Adaptive optics pinpoints 2 supermassive black holes in colliding galaxies

May 17, 2007
Adaptive optics pinpoints 2 supermassive black holes in colliding galaxies
An adaptive optics image of the double nucleus of the galaxy merger NGC 6240, taken in infrared light with the Keck II Telescope. The feature within the north nucleus labeled "North 2" is at the position of the northern supermassive black hole. The southern supermassive black hole is located just north (above) the feature labeled "South 1" in the south nucleus. The yellow vertical line represents one second of arc, or 490 parsecs at the distance of NGC 6240. Image Credit: C. Max, G. Canalizo, and W. de Vries.

Astronomers have discovered the exact location and makeup of a pair of supermassive black holes at the center of a collision of two galaxies more than 300 million light years away.

Using adaptive optics (AO), which clear the blurring effects of turbulence in the Earth's atmosphere, Livermore scientists observed that the two black holes formed at the center of a rotating disk of stars in the galaxy merger known as NGC 6240 and are surrounded by a cloud of young star clusters.

Supermassive black holes contain millions to billions of times the mass of the sun and are believed to exist in the center of most galaxies, including our own Milky Way.

For years, astronomers have known that NGC 6240 hosted at least one supermassive black hole. Later observations at NASA's Chandra X-Ray Observatory confirmed that there were actually two supermassive black holes in the core of NGC 6240. And the new research, which appears in the May 17 edition of Science Express, confirms the exact location and environment of the two black holes from observations at the W.M. Keck Observatory.

"People had observed this pair of colliding galaxies at different wavelengths and seen what they thought were the black holes, but it's been very hard to make sense of how the observations at various wavelengths correspond to each other," said Claire Max, lead author of the paper. Max is an astronomer at Lawrence Livermore National Laboratory's Institute for Geophysics and Planetary Physics and a faculty member at UC Santa Cruz. "The adaptive optics results enabled us to tie it all together, so now we can really see it all – the hot dust in the infrared, the stars in the visible and infrared, and the X-rays and radio emissions coming from right around the black holes."

Adaptive optics enables astronomers to minimize the blurring effects of the Earth's atmosphere, producing images with unprecedented detail and resolution. The adaptive optics system uses light from a relatively bright star, or guide star, to measure the atmospheric distortions and to correct for them, but only about 1 percent of the sky contains stars sufficiently bright to be of use. A laser built by LLNL has been commissioned at Keck, in which adaptive optics can be used nearly anywhere in the sky by producing an artificial laser guide star.

Other Livermore researchers include Willem de Vries of IGPP and UC Davis and former LLNL postdoctoral researcher Gabriela Canalizo, who is now a faculty member at UC Riverside.

The spatial resolution using adaptive optics at the 10-meter Keck II telescope is an improvement of a factor of 10 over what can be done with conventional ground-based imaging.

Hubble Space Telescope images show that the two black holes are surrounded by patchy dust that partially obscures visible light. However, in the infrared light used in the Keck AO observations, the black holes are more distinct and are surrounded by many young star clusters that formed in the merger.

"With the infrared images we got at Keck, we were able to line up the information from all the different wavelengths to determine which features in the images are the black holes," said Max, who also serves as director at the Center for Adaptive Optics at UC Santa Cruz.

Galaxy mergers are thought to play a major role in galaxy evolution and may help explain many of their properties. For example, astronomers have found that the mass of the black hole at the center of a galaxy is highly correlated with large-scale properties of the galaxy itself. The "coevolution" hypothesis explains this correlation as the result of both the black hole and the galaxy around it growing incrementally in repeated merger events over cosmic time scales.

"The gravitational influence of the black hole is actually limited to a relatively small region right around it, so how can it affect the rest of the galaxy" But if the black hole and the galaxy around it evolved together through the same sequence of merger events, that would explain the correlations," Max said. "That's why people are so excited about understanding galaxy mergers, and here we're seeing it in action."

Source: Lawrence Livermore National Laboratory

Explore further: Image: Multicoloured view of supernova remnant

add to favorites email to friend print save as pdf

Related Stories

Two spiral galaxies in the process of merging

Dec 12, 2014

At this time of year, there are lots of gatherings often decorated with festive lights. When galaxies get together, there is the chance of a spectacular light show as is the case with NGC 2207 and IC 2163

Warm gas pours 'cold water' on galaxy's star-making

Dec 08, 2014

Some like it hot, but for creating new stars, a cool cosmic environment is ideal. As a new study suggests, a surge of warm gas into a nearby galaxy—left over from the devouring of a separate galaxy—has ...

Strange galaxy perplexes astronomers

Dec 02, 2014

With the help of citizen scientists, a team of astronomers has found an important new example of a very rare type of galaxy that may yield valuable insight on how galaxies developed in the early Universe. ...

Study suggests black hole jets get their power from spin

Nov 20, 2014

(Phys.org) —A team of space scientists working in Italy has found more evidence that suggests the energy needed to emit jets from supermassive black holes comes from the spin of the black hole itself. In ...

Recommended for you

Image: Multicoloured view of supernova remnant

7 hours ago

Most celestial events unfold over thousands of years or more, making it impossible to follow their evolution on human timescales. Supernovas are notable exceptions, the powerful stellar explosions that make ...

Ultra-luminous X-ray sources in starburst galaxies

7 hours ago

Ultra-luminous X-ray sources (ULXs) are point sources in the sky that are so bright in X-rays that each emits more radiation than a million suns emit at all wavelengths. ULXs are rare. Most galaxies (including ...

When a bright light fades

7 hours ago

Astronomer Charles Telesco is primarily interested in the creation of planets and stars. So, when the University of Florida's giant telescope was pointed at a star undergoing a magnificent and explosive death, ...

Image: Horsehead nebula viewed in infrared

8 hours ago

Sometimes a horse of a different color hardly seems to be a horse at all, as, for example, in this newly released image from NASA's Spitzer Space Telescope. The famous Horsehead nebula makes a ghostly appearance ...

The Milky Way's new neighbour

8 hours ago

The Milky Way, the galaxy we live in, is part of a cluster of more than 50 galaxies that make up the 'Local Group', a collection that includes the famous Andromeda galaxy and many other far smaller objects. ...

Image: Hubble sweeps a messy star factory

8 hours ago

This sprinkle of cosmic glitter is a blue compact dwarf galaxy known as Markarian 209. Galaxies of this type are blue-hued, compact in size, gas-rich, and low in heavy elements. They are often used by astronomers ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.