Tracking a hot spot

May 17, 2007

Using a state-of-the-art satellite imagery technique, researchers are able to more precisely predict volcanic activity, bringing them steps closer to understanding where an eruption may occur. A new research study, titled "Stress Control of Deep Rift Intrusion at Mauna Loa Volcano, Hawaii," being published in the May 18 issue of the journal Science uses satellite imagery to study volcanic activity at Mauna Loa on the Big Island of Hawaii.

With this new technique, researchers can more precisely forecast locations of volcanic activity -- providing critical information to improve warning systems and hazard assessment of populated areas surrounding one of the world’s most naturally dangerous ecosystems, volcanoes.

A team of researchers, lead by Dr. Falk Amelung, a geology and geophysics assistant professor at the University of Miami Rosenstiel School of Marine and Atmospheric Science, used interferometric synthetic aperture radar (InSAR) from 2002 to 2005 to obtain images of the ground deformation associated with volcanic activity.

Researchers were able to see distinct patterns of magma activity associated with rift zones, long narrow fractures in the earth’s crust from which lava flows out. Magma pathways were unclamped by past eruptions and earthquakes, leaving a place for the magma to enter. Magma accumulates in the rift zones, pushed the flanks apart, creating stress in the area that ultimately erupts.

"We are able to infer very precisely where magma accumulation occurred and we have an explanation why it occurred in this particular location," Amelung said. "We now have a good idea where the next eruption is most likely to occur. This technique can be employed on other large volcanoes to better forecast eruption locations."

Researchers are studying Mauna Loa because it’s the largest and one of the most active volcanoes on Earth. The main volcanic hazards, lava flows and flank collapse, can pose a significant hazard to populated areas. Flank collapse, which can trigger tsunamis, creates an additional hazard to these increasingly populated areas of volcano flanks, like Mauna Loa volcano. This research technique can be applied to other active volcanoes, Mt. Etna in Italy, Piton de la Fournaise on Reunion Island, Kilauea in Hawaii, and many others, including in Central America.

Source: University of Miami Rosenstiel School of Marine & Atmospheric Science

Explore further: NASA balloons begin flying in Antarctica for 2014 campaign

add to favorites email to friend print save as pdf

Related Stories

UW team explores large, restless volcanic field in Chile

Dec 01, 2014

If Brad Singer knew for sure what was happening three miles under an odd-shaped lake in the Andes, he might be less eager to spend a good part of his career investigating a volcanic field that has erupted ...

And now, the volcano forecast

Oct 22, 2014

Scientists are using volcanic gases to understand how volcanoes work, and as the basis of a hazard-warning forecast system.

Recommended for you

Scientists make strides in tsunami warning since 2004

18 hours ago

The 2004 tsunami led to greater global cooperation and improved techniques for detecting waves that could reach faraway shores, even though scientists still cannot predict when an earthquake will strike.

Trade winds ventilate the tropical oceans

19 hours ago

Long-term observations indicate that the oxygen minimum zones in the tropical oceans have expanded in recent decades. The reason is still unknown. Now scientists at the GEOMAR Helmholtz Centre for Ocean Research ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.