Penn Physicists Develop a Carbon Nanotube Aeroegel Optimizing Strength, Shape and Conductivity

May 16, 2007

Researchers at the University of Pennsylvania have created low-density aerogels made from carbon nanotubes, CNTs, that are capable of supporting 8,000 times their own weight. The new material also combines the strength and ultra-light, heat-insulating properties of aerogels with the electrical conductivity of nanotubes.

Aerogels are novel, semi-transparent, low-density materials created by replacing the liquid component of a gel with gas and are normally constructed from silicon dioxide or other organic polymers. They are currently used as ultra-light structural materials, radiation detectors and thermal insulators. Aerogels made from CNTs offer advantages to current aeroegels that point towards future applications in chemical or biological sensors.

A collaboration led by Arjun G. Yodh and Jay Kikkawa of the department of Physics and Astronomy at Penn created the aerogels by freeze-drying or critical-point-drying CNT networks suspended in fluid. The process produces a carbon nanotube network whose carbon concentration, electrical conductivity and strength can be manipulated. Critical-point-drying demonstrated reproducible conductivity in the aerogels.

The findings were reported in the journal Advanced Materials.

The team also maintained control of the density, microscopic structure and shape of the CNT aerogels. Normally, carbon nanotube composites can be fragile, depending on the dispersion of carbon nanotubes throughout the composite. The addition of polyvinyl alcohol created a more even dispersion of CNT throughout the aerogel, adding strength.

The study was conducted by Yodh, Kikkawa, Mateusz B. Bryning, Daniel E. Milkie and Lawrence A. Hough of Penn's Department of Physics and Astronomy and Mohammad F. Islam of the Department of Chemical Engineering at Carnegie Mellon University.

Source: University of Pennsylvania

Explore further: Demystifying nanocrystal solar cells

add to favorites email to friend print save as pdf

Related Stories

Researchers produce ultra-light aerogel

Mar 25, 2013

A research team headed by Professor Gao Chao have developed ultra-light aerogel – it breaks the record of the world's lightest material with surprising flexibility and oil-absorption. This progress is published ...

Recommended for you

Demystifying nanocrystal solar cells

Jan 28, 2015

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.