Mysteries and Surprises in Quantum Physics

May 14, 2007

“Cavity quantum electrodynamics” is a sub-field of quantum optics. Speaking at the EPL symposium, “Physics In Our Times” held last week at the Fondation Del Duca de l’Institut de France, Paris Professor Serge Haroche from the Collège de France and the École Normale Supérieure in Paris, explained how he and his colleagues manipulate and control single atoms and single photons interacting in a cavity, which is a box made of highly reflecting walls.

By studying the behaviour of these atoms and photons in this protected environment, the physicists can illustrate fundamental aspects of quantum theory, such as state superpositions, complementarity and decoherence. This research is related to the physics of quantum information, a new domain at the frontier of information science and physics that tries to harness the logic of the quantum world to realise tasks in communication and computing that classical devices cannot achieve.

“During the 20th century, quantum physics has given us new technologies that have changed our lives – for example the computer, the laser and magnetic resonance imaging to name a few,” explained Prof. Haroche. “However, quantum laws have counterintuitive aspects that defy common sense. This has led to a paradox: although we all take advantage of quantum physics, it remains very strange - even some of the scientists that developed the theory, such as Einstein, Schrödinger and de Broglie, were uneasy about its deep meaning,” he said.

Prof. Haroche and his team have recently succeeded in trapping a single photon in a box on the time scale of seconds and have detected this photon many times without destroying it. The researchers have achieved this by sending atoms across the box and measuring the imprint left on the atoms by the photon. This is a new kind of light detection called ‘quantum non-demolition’,” explained Prof. Haroche. “Until now, single photons were always destroyed upon detection.”

The result means that it is now possible repeatedly to extract information from the same photon. This is important because the major part of all information we get from the universe come from light. “Developing a new way of ‘seeing’ could have applications in quantum science,” said Prof. Haroche. “A photon could share its information with an ensemble of atoms to build up an ‘entangled state’ of light or matter”.

Attempting to manipulate and control quantum systems raises important questions about the transition between quantum and classical behaviour. “Fundamentally, the goal is to understand nature better,” explained Prof. Haroche. “Applications, such as quantum communication machines, will certainly come but what they will be useful for is not yet clear. This is why research is so exciting – unpredictable things keep happening all the time.”

Prof. Haroche’s group is currently working with atoms and photons in cavities but related work is being done by other groups on trapped ions and cold atoms in optical potential wells, with superconducting junction or quantum dots in solid state devices. “Although the technologies may differ widely, the quantum and information science concepts used are the same,” he explained. “We are therefore witnessing a kind of unification between different fields of research that is very promising.”

Source: Institute of Physics

Explore further: And so they beat on, flagella against the cantilever

add to favorites email to friend print save as pdf

Related Stories

Hydrogen atoms under the magnifying glass

May 22, 2013

To describe the microscopic properties of matter and its interaction with the external world, quantum mechanics uses wave functions, whose structure and time dependence is governed by the Schrödinger equation. ...

Combining quantum information communication and storage

Feb 14, 2013

(Phys.org)—Aalto University researchers in Finland have successfully connected a superconducting quantum bit, or qubit, with a micrometer-sized drum head. Thus they transferred information from the qubit ...

Einstein's dream surpassed

Sep 02, 2011

(PhysOrg.com) -- A constant stabilization experiment of a quantum state has been successfully carried out for the first time by a team from the Laboratoire Kastler Brossel headed by Serge Haroche. The researchers succeeded ...

Recommended for you

And so they beat on, flagella against the cantilever

18 hours ago

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Tandem microwave destroys hazmat, disinfects

22 hours ago

Dangerous materials can be destroyed, bacteria spores can be disinfected, and information can be collected that reveals the country of origin of radiological isotopes - all of this due to a commercial microwave ...

Cornell theorists continue the search for supersymmetry

Sep 16, 2014

(Phys.org) —It was a breakthrough with profound implications for the world as we know it: the Higgs boson, the elementary particle that gives all other particles their mass, discovered at the Large Hadron ...

How did evolution optimize circadian clocks?

Sep 12, 2014

(Phys.org) —From cyanobacteria to humans, many terrestrial species have acquired circadian rhythms that adapt to sunlight in order to increase survival rates. Studies have shown that the circadian clocks ...

User comments : 0