Hot Fluids and Deep Earthquakes

May 08, 2007

Fluids in the Earth's lower crust are an underlying force in shaking things up where continental plates slip under each other, according to a study recently published in Nature. Donna Eberhart-Phillips, a UC Davis researcher in geology, collaborated on the study with Martin Reyners from GNS Science, New Zealand, and Graham Stuart from the University of Leeds, England.

Eberhart-Phillips said that these findings contradict the existing model for explaining earthquakes in the lower crust, which assumed that the lower crust had to be cold and brittle for earthquakes to occur. The new study shows that the presence of hot fluids can also weaken the crust from below.

"Rifting is caused not just by properties of the crustal material, but of the mantle below it where fluids are being released," Eberhart-Phillips said.

The study focused on the Taupo Volcanic Zone (TVZ), an active continental rift that cuts across the face of New Zealand's North Island. Located where the Pacific continental plate slips under the Australian plate, the TVZ is the most active and productive volcanic system on Earth. Eberhart-Phillips said that earthquakes in this area are deeper than average and occur in swarms, which is characteristic of fluids present at depth. Swarms consist of several small quakes occurring simultaneously, as opposed to a large quake followed by aftershocks.

The researchers used three-dimensional imaging to map the decrease of energy released from more than 1,600 seismic events in the TVZ. Their seismic velocity readings penetrated 200 miles through the Earth's crust and into the mantle, the layer below the crust.

"The thing that is unique about our study is the combination of the 3-D attenuation image of the whole region, and looking within that at the swarm earthquakes in detail," Eberhart-Phillips said.

Of particular interest to the researchers was the end of the subduction zone, where expected volcanic action does not occur. Three-dimensional imaging data suggests that thick crust chokes off the fluids at this end. Fluids appear to flow laterally along the TVZ, which may contribute to its high magma production.

The work was published in the April 26 issue of the journal Nature.

Source: UC Davis

Explore further: Aging Africa

add to favorites email to friend print save as pdf

Related Stories

Ahead of Emmys, Netflix already winning online

2 hours ago

Even if it doesn't take home any of the major trophies at Monday's Emmy Awards, Netflix will have already proven itself the top winner in one regard: Internet programming.

US warns shops to watch for customer data hacking

2 hours ago

The US Department of Homeland Security on Friday warned businesses to watch for hackers targeting customer data with malicious computer code like that used against retail giant Target.

SpaceX rocket explodes during test flight

2 hours ago

A SpaceX rocket exploded in midair during a test flight, though no one was injured, as the company seeks to develop a spacecraft that can return to Earth and be used again.

Official says hackers hit up to 25,000 US workers

2 hours ago

The internal records of as many as 25,000 Homeland Security Department employees were exposed during a recent computer break-in at a federal contractor that handles security clearances, an agency official said Friday.

Recommended for you

Aging Africa

12 hours ago

In the September issue of GSA Today, Paul Bierman of the University of Vermont–Burlington and colleagues present a cosmogenic view of erosion, relief generation, and the age of faulting in southernmost Africa ...

NASA animation shows Hurricane Marie winding down

13 hours ago

NOAA's GOES-West satellite keeps a continuous eye on the Eastern Pacific and has been covering Hurricane Marie since birth. NASA's GOES Project uses NOAA data and creates animations and did so to show the end of Hurricane ...

EU project sails off to study Arctic sea ice

18 hours ago

A one-of-a-kind scientific expedition is currently heading to the Arctic, aboard the South Korean icebreaker Araon. This joint initiative of the US and Korea will measure atmospheric, sea ice and ocean properties with technology ...

User comments : 0