Hot Fluids and Deep Earthquakes

May 08, 2007

Fluids in the Earth's lower crust are an underlying force in shaking things up where continental plates slip under each other, according to a study recently published in Nature. Donna Eberhart-Phillips, a UC Davis researcher in geology, collaborated on the study with Martin Reyners from GNS Science, New Zealand, and Graham Stuart from the University of Leeds, England.

Eberhart-Phillips said that these findings contradict the existing model for explaining earthquakes in the lower crust, which assumed that the lower crust had to be cold and brittle for earthquakes to occur. The new study shows that the presence of hot fluids can also weaken the crust from below.

"Rifting is caused not just by properties of the crustal material, but of the mantle below it where fluids are being released," Eberhart-Phillips said.

The study focused on the Taupo Volcanic Zone (TVZ), an active continental rift that cuts across the face of New Zealand's North Island. Located where the Pacific continental plate slips under the Australian plate, the TVZ is the most active and productive volcanic system on Earth. Eberhart-Phillips said that earthquakes in this area are deeper than average and occur in swarms, which is characteristic of fluids present at depth. Swarms consist of several small quakes occurring simultaneously, as opposed to a large quake followed by aftershocks.

The researchers used three-dimensional imaging to map the decrease of energy released from more than 1,600 seismic events in the TVZ. Their seismic velocity readings penetrated 200 miles through the Earth's crust and into the mantle, the layer below the crust.

"The thing that is unique about our study is the combination of the 3-D attenuation image of the whole region, and looking within that at the swarm earthquakes in detail," Eberhart-Phillips said.

Of particular interest to the researchers was the end of the subduction zone, where expected volcanic action does not occur. Three-dimensional imaging data suggests that thick crust chokes off the fluids at this end. Fluids appear to flow laterally along the TVZ, which may contribute to its high magma production.

The work was published in the April 26 issue of the journal Nature.

Source: UC Davis

Explore further: Scientists make strides in tsunami warning since 2004

add to favorites email to friend print save as pdf

Related Stories

Underfire Uber ramps up rider safety

56 minutes ago

Uber is ramping up driver background checks and other security measures worldwide after the smartphone-focused car-sharing service was banned in New Delhi following the alleged rape of a passenger.

US probe links NKorea to Sony hacking

1 hour ago

A U.S. official says federal investigators have now connected the Sony Pictures Entertainment Inc. hacking to North Korea and are expected to make an announcement in the near future.

New York state bans fracking

1 hour ago

Governor Andrew Cuomo said Wednesday he would ban hydraulic fracking in New York State, citing health concerns about the controversial oil and gas drilling technique.

Sony cancels NKorea parody film release after threats

1 hour ago

Hollywood studio Sony Pictures on Wednesday abruptly canceled the December 25 release date of "The Interview," a parody film which has angered North Korea and triggered chilling threats from hackers.

Recommended for you

Scientists make strides in tsunami warning since 2004

4 hours ago

The 2004 tsunami led to greater global cooperation and improved techniques for detecting waves that could reach faraway shores, even though scientists still cannot predict when an earthquake will strike.

Trade winds ventilate the tropical oceans

4 hours ago

Long-term observations indicate that the oxygen minimum zones in the tropical oceans have expanded in recent decades. The reason is still unknown. Now scientists at the GEOMAR Helmholtz Centre for Ocean Research ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.