New 'layered-layered' materials for rechargeable lithium batteries

May 07, 2007

Researchers at the Department of Energy's Argonne National Laboratory have developed a new approach to increasing the capacity and stability of rechargeable lithium-ion batteries.

The technology is based on a new material for the positive electrode that is comprised of a unique nano-crystalline, layered-composite structure.

Argonne’s strategy uses a two-component "composite" structure -- an active component that provides for charge storage is embedded in an inactive component that stabilizes the structure.

Details of the new developments will be presented on Tuesday, May 8 at the 211th Meeting of The Electrochemical Society, being held in Chicago, May 6-10.

In recent tests, the new materials yielded exceptionally high charge-storage capacities, greater than 250 mAh/g, or more than twice the capacity of materials in conventional rechargeable lithium batteries. Theories explaining the high capacity of these manganese-rich electrodes and their stability upon charge/discharge cycling will be discussed at the Electrochemical Society meeting.

In addition, by focusing on manganese-rich systems, instead of the more expensive cobalt and nickel versions of lithium batteries, overall battery cost is reduced.

Rechargeable lithium-ion batteries which would incorporate the new materials with increased capacity and enhanced stability could be expected to be used in a diverse range of applications, from consumer electronics such as cell phones and laptop computers, to cordless tools and medical devices such as cardiac pacemakers and defibrillators. In larger batteries, the technology could be used in the next generation of hybrid electric vehicles and plug-in hybrid electric vehicles.

Source: Argonne National Laboratory

Explore further: Carbon nanoballs can greatly contribute to sustainable energy supply

add to favorites email to friend print save as pdf

Related Stories

Got Battery? Lots of low battery hacks but no quick fix

Jan 22, 2015

At a cozy watering hole in Brooklyn's Bedford-Stuyvesant neighborhood, bartender Kathy Conway counted four different phone chargers behind the bar. Call it the scourge of the red zone, call it battery anxiety. ...

Laser-induced graphene 'super' for electronics

Jan 14, 2015

Rice University scientists advanced their recent development of laser-induced graphene (LIG) by producing and testing stacked, three-dimensional supercapacitors, energy-storage devices that are important ...

Glass for battery electrodes

Jan 13, 2015

Today's lithium-ion batteries are good, but not good enough if our future energy system is to rely on electrical power. Chemists and materials scientists at ETH Zurich have developed a type of glass that ...

Future batteries: Lithium-sulfur with a graphene wrapper

Dec 16, 2014

What do you get when you wrap a thin sheet of the "wonder material" graphene around a novel multifunctional sulfur electrode that combines an energy storage unit and electron/ion transfer networks? An extremely ...

Recommended for you

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.