Nano Structures Can Pose Big Measurement Problems

Apr 27, 2007

Materials scientists will tell you that to best understand, characterize and eventually utilize the properties of a specific material, you have to be able to define how the atoms within it are arranged. In the case of common crystals, there are numerous methods, such as X-ray diffraction, by which this can be done.

Not so for nanostructured materials (structures with atomic arrangements at a scale of 1-100 nanometers, or between 5 to 1,000 atoms in size) where the inability to determine atomic order with high precision has been dubbed the “nanostructure problem.”

In a paper published in the April 27 Science, researchers Igor Levin at the National Institute of Standards and Technology and Simon J.L. Billinge at Michigan State University reviewed various classes of nanostructured materials, listed the array of methods currently used to study their atomic makeup and defined the problems inherent with each one.

Overall, the authors state that while many methods exist for probing the atomic structure on the nanoscale, no single technique can provide a unique structural solution.

The authors conclude their paper by calling for a coordinated effort by researchers to develop a coherent strategy for a comprehensive solution of the “nanostructure problem” using inputs from multiple experimental methods and theory.

Citation: S.J.L. Billinge and I. Levin. The problem with determining atomic structure at the nanoscale. Science, 316: 5823, April 27, 2007.

Source: National Institute of Standards and Technology

Explore further: Making graphene in your kitchen

add to favorites email to friend print save as pdf

Related Stories

A beautiful, peculiar molecule

7 hours ago

"Carbon is peculiar," said Nobel laureate Sir Harold Kroto. "More peculiar than you think." He was speaking to a standing-room-only audience that filled the Raytheon Amphitheater on Monday afternoon for the ...

Combs of light accelerate communication

Apr 14, 2014

Miniaturized optical frequency comb sources allow for transmission of data streams of several terabits per second over hundreds of kilometers – this has now been demonstrated by researchers of Karlsruhe ...

New 'switch' could power quantum computing

Apr 09, 2014

Using a laser to place individual rubidium atoms near the surface of a lattice of light, scientists at MIT and Harvard University have developed a new method for connecting particles—one that could help ...

Recommended for you

Making graphene in your kitchen

10 hours ago

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.