Nano Structures Can Pose Big Measurement Problems

Apr 27, 2007

Materials scientists will tell you that to best understand, characterize and eventually utilize the properties of a specific material, you have to be able to define how the atoms within it are arranged. In the case of common crystals, there are numerous methods, such as X-ray diffraction, by which this can be done.

Not so for nanostructured materials (structures with atomic arrangements at a scale of 1-100 nanometers, or between 5 to 1,000 atoms in size) where the inability to determine atomic order with high precision has been dubbed the “nanostructure problem.”

In a paper published in the April 27 Science, researchers Igor Levin at the National Institute of Standards and Technology and Simon J.L. Billinge at Michigan State University reviewed various classes of nanostructured materials, listed the array of methods currently used to study their atomic makeup and defined the problems inherent with each one.

Overall, the authors state that while many methods exist for probing the atomic structure on the nanoscale, no single technique can provide a unique structural solution.

The authors conclude their paper by calling for a coordinated effort by researchers to develop a coherent strategy for a comprehensive solution of the “nanostructure problem” using inputs from multiple experimental methods and theory.

Citation: S.J.L. Billinge and I. Levin. The problem with determining atomic structure at the nanoscale. Science, 316: 5823, April 27, 2007.

Source: National Institute of Standards and Technology

Explore further: Engineers create structures tougher than bulletproof vests

add to favorites email to friend print save as pdf

Related Stories

Light as puppeteer

Mar 18, 2015

Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have demonstrated a more robust method for controlling single, micron-sized particles with light.

Imperfect graphene opens door to better fuel cells

Mar 17, 2015

The honeycomb structure of pristine graphene is beautiful, but Northwestern University scientists, together with collaborators from five other institutions, have discovered that if the graphene naturally ...

Recommended for you

Chemists make new silicon-based nanomaterials

6 hours ago

Chemists from Brown University have found a way to make new 2-D, graphene-like semiconducting nanomaterials using an old standby of the semiconductor world: silicon.

Graphene applications in mobile communication

Mar 23, 2015

GSM, UMTS, LTE, WiFi, Bluetooth – to name just a few of the wireless standards that have become a natural part of mobile communication today. For all these wireless standards, signal processing could not ...

A graphene solution for microwave interference

Mar 23, 2015

Microwave communication is ubiquitous in the modern world, with electromagnetic waves in the tens of gigahertz range providing efficient transmission with wide bandwidth for data links between Earth-orbiting ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.