Nanoscale 'Coaxial Cables' for Solar Energy Harvesting

Apr 23, 2007 feature
Nanoscale 'Coaxial Cables' for Solar Energy Harvesting
Figure 1: A cross-section of a conventional coaxial cable

Scientists have designed a new type of nanowire – a tiny coaxial cable – that could vastly improve a few key renewable energy technologies, particularly solar cells, and could even impact other cutting-edge, developing technologies, such as quantum computing and nanoelectronics.

The nanowire, developed by researchers from the National Renewable Energy Laboratory (NREL) and Lawrence Berkeley National Laboratory, may solve several problems currently associated with renewable energy applications.

Nanoscale 'Coaxial Cables' for Solar Energy Harvesting
Figure 2: A cross-section of the nanoscale coaxial cable, in which nitrogen, phosphorus, and gallium atoms are shown in blue, yellow, and magenta, respectively. White spheres represent hydrogen atoms, which help render the surface of the wire chemically non-reactive.

One overarching problem is that current semiconducting materials with the potential for use in renewable energy devices lack one key characteristic. When electrons in these materials are excited by light and jump to higher energy levels (leaving vacancies, known as “holes,” in the lower levels), both the electrons and the holes typically move around in the same region. Thus, they tend to recombine. This is desirable for certain applications, such as light-emitting devices, where electron-hole recombination produces light, but is not ideal for renewable energy devices. A better scenario is the separation of the excited electrons from the holes such that, in the case of solar cells, for example, the electrons can be drawn off and used for electricity.

“Our nanowires were designed to provide this feature, along with a superior electrical conductivity,” said NREL materials scientist Yong Zhang, the study's corresponding researcher, to “Both of these properties are critical in order for renewable energy devices to reach their ultimate efficiency limits.”

Conventional coaxial cables consist of a central copper wire symmetrically surrounded by a braided copper conductor, with an insulating spacer material between the two. The braid serves as a return route for electrons that have already passed down the core wire; it can equally be viewed as a channel for holes moving in the opposite direction. The insulator separates the charge passing through the wire and braid.

Mimicking this structure, the group designed a nanoscale version consisting of a central wire, the “core,” surrounded by a shell (the shell is not cylindrical like conventional cables, but rather is hexagonal). The researchers used two semiconducting materials: gallium nitride (GaN) and gallium phosphide (GaP). They made two samples, one with a GaN core and GaP shell, and another with a GaP core and GaN shell. Both wires are approximately four nanometers in diameter (according to Zhang, this particular size was chosen by considering the computational effort needed to analyze the wires' properties, because larger wires, while easier to make, require considerably more computing power and time to model. Similar success, he says, could be achieved with nanowires up to 10-15 nanometers in diameter). In neither sample is an insulating spacer required. This phenomenon is the result of the specific semiconducting behaviors of GaN and GaP.

GaN and GaP, like all semiconductors, are classified by “band gap” – how much energy is required for electrons in the material to jump from the top of the “valence band,” a range of energies for which they don't participate in conduction, to the bottom of the “conduction band,” a range for which they do participate. When GaN and GaP are combined into a wire, the structure as a whole assumes its own band gap, which is very different from that of either component but much more appropriate for solar energy applications.

Besides providing efficient charge separation, the design may be able to remedy several shortcomings of solar-energy applications. For example, they could help widen the coverage of the solar spectrum and minimize energy loss associated with electron-hole recombination.

“We can tailor the properties of these cables to address the specific problems associated with each application,” said Zhang. “Beyond renewable energy applications, they could have exciting uses ranging from quantum computing to nanoelectronics.”

This research is described in detail in the April 5, 2007, online edition of Nano Letters.

Citation: Yong Zhang, Lin-Wang Wang, and Angelo Mascarenhas, “'Quantum Coaxial Cables' for Solar Energy Harvesting.” Nano Lett. ASAP Article, DOI: 10.1021/nl070066t

Copyright 2007
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of

Explore further: Thinnest feasible nano-membrane produced

add to favorites email to friend print save as pdf

Related Stories

Unlocking secrets of new solar material

1 hour ago

( —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...

Wind energy: On the grid, off the checkerboard

Apr 01, 2014

As wind farms grow in importance across the globe as sources of clean, renewable energy, one key consideration in their construction is their physical design—spacing and orienting individual turbines to ...

A better water wing to harvest tidal energy

Mar 18, 2014

( —The eternal ebb and flow of tides—24 x 7 x 365—makes them a dependable source of energy, but how to harness all that, especially in shallow water? Shreyas Mandre and colleagues at Brown ...

Simulating how the Earth kick-started metabolism

Mar 12, 2014

( —Researchers have developed a new approach to simulating the energetic processes that may have led to the emergence of cell metabolism on Earth – a crucial biological function for all living ...

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

( —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Feb 13, 2009
Oh great. Not only is coaxial cable useless to begin with, but now we're using it for this???
This will never catch on because manufactures will soon phase out coax altogether.

More news stories

'Exotic' material is like a switch when super thin

( —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Innovative strategy to facilitate organ repair

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...