Stretching DNA to the Limit: DNA damage in a new light

Apr 20, 2007

It has long been known that UV light can damage DNA, reducing its ability to replicate and interact with proteins, and often resulting in the development of skin cancers. However, not much is known about how the elasticity of DNA strands is altered upon exposure to UV light. Now a group of researchers at Duke University have developed a method to measure changes in the mechanical properties of DNA upon irradiation with UV light.

Piotr Marszalek and his colleagues have conducted single-molecule force spectroscopy measurements on viral DNA, which show the unraveling of the DNA double helix upon exposure to UV irradiation. The researchers essentially pick up individual DNA molecules with the tip of a scanning probe microscope and stretch it while measuring the forces generated.

These “stretch—release” measurements enable the accurate determination of changes in the elasticity of the DNA strands. Upon exposure to UV light, the force profile of the viral DNA changes dramatically in a dose-dependent manner. The force curve of intact DNA is characterized by a plateau region. This characteristic plateau is drastically reduced in width with increasing exposure to UV light.

UV light induces the crosslinking of the constituent DNA bases within the polynucleotide chains, as well as causes the formation of lesions by linking together the adjacent strands. The small changes in structure induced by this crosslinking can very profoundly affect the ability of DNA to recognize specific molecules, and can thus completely disrupt its ability to replicate and interact with the transcriptional machinery to synthesize proteins.

Marszalek and his colleagues have also examined synthetic DNA to figure out the extent to which different bases are affected by UV light. They conclude that the changes in the force profile of viral DNA exposed to UV light are due to the local unwinding of the double helix in some regions arising from the massive formation of crosslinked structures.

“These are the first measurements that establish a relationship between DNA nanomechanics and damage”, said Marszalek. He believes that this work paves the way for using stretch—release force spectroscopy measurements in DNA diagnostics.

Citation: Piotr E. Marszalek, Nanomechanical Fingerprints of UV Damage To DNA, Small 2007, 3, No. 5, 809–813, doi: 10.1002/smll.200600592

Source: Wiley-VCH

Explore further: 'NanoSuit': Researchers use nano-coating to allow for electron microscopy of living insects

add to favorites email to friend print save as pdf

Related Stories

An ecological rule for animals applies to flowers

Jan 08, 2015

When, in 1833, Constantin Wilhelm Lambert Gloger published his key observation that warm-blooded animals tend to be more heavily pigmented or darker the closer they live to the equator, he probably didn't realize the degree ...

Sun may determine lifespan at birth, study finds

Jan 07, 2015

Could the Sun be your lucky—or unlucky—star? In an unusual study published Wednesday, Norwegian scientists said people born during periods of solar calm may live longer, as much as five years on average, ...

Ninety-eight new beetle species discovered in Indonesia

Dec 22, 2014

Ninety-eight new species of the beetle genus Trigonopterus have been described from Java, Bali and other Indonesian islands. Museum scientists from Germany and their local counterparts used an innovative approa ...

Recommended for you

Holes in valence bands of nanodiamonds discovered

Jan 28, 2015

Nanodiamonds are tiny crystals only a few nanometers in size. While they possess the crystalline structure of diamonds, their properties diverge considerably from those of their big brothers, because their ...

Engineering self-assembling amyloid fibers

Jan 26, 2015

Nature has many examples of self-assembly, and bioengineers are interested in copying or manipulating these systems to create useful new materials or devices. Amyloid proteins, for example, can self-assemble ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.