Stretching DNA to the Limit: DNA damage in a new light

Apr 20, 2007

It has long been known that UV light can damage DNA, reducing its ability to replicate and interact with proteins, and often resulting in the development of skin cancers. However, not much is known about how the elasticity of DNA strands is altered upon exposure to UV light. Now a group of researchers at Duke University have developed a method to measure changes in the mechanical properties of DNA upon irradiation with UV light.

Piotr Marszalek and his colleagues have conducted single-molecule force spectroscopy measurements on viral DNA, which show the unraveling of the DNA double helix upon exposure to UV irradiation. The researchers essentially pick up individual DNA molecules with the tip of a scanning probe microscope and stretch it while measuring the forces generated.

These “stretch—release” measurements enable the accurate determination of changes in the elasticity of the DNA strands. Upon exposure to UV light, the force profile of the viral DNA changes dramatically in a dose-dependent manner. The force curve of intact DNA is characterized by a plateau region. This characteristic plateau is drastically reduced in width with increasing exposure to UV light.

UV light induces the crosslinking of the constituent DNA bases within the polynucleotide chains, as well as causes the formation of lesions by linking together the adjacent strands. The small changes in structure induced by this crosslinking can very profoundly affect the ability of DNA to recognize specific molecules, and can thus completely disrupt its ability to replicate and interact with the transcriptional machinery to synthesize proteins.

Marszalek and his colleagues have also examined synthetic DNA to figure out the extent to which different bases are affected by UV light. They conclude that the changes in the force profile of viral DNA exposed to UV light are due to the local unwinding of the double helix in some regions arising from the massive formation of crosslinked structures.

“These are the first measurements that establish a relationship between DNA nanomechanics and damage”, said Marszalek. He believes that this work paves the way for using stretch—release force spectroscopy measurements in DNA diagnostics.

Citation: Piotr E. Marszalek, Nanomechanical Fingerprints of UV Damage To DNA, Small 2007, 3, No. 5, 809–813, doi: 10.1002/smll.200600592

Source: Wiley-VCH

Explore further: Experts cautious over Google nanoparticle project

add to favorites email to friend print save as pdf

Related Stories

Triplet threat from the sun

Oct 21, 2014

The most obvious effects of too much sun exposure are cosmetic, like wrinkled and rough skin. Some damage, however, goes deeper—ultraviolet light can damage DNA and cause proteins in the body to break down ...

Researchers use ancient gene to study virus biology

Oct 15, 2014

Researchers at the University of Delaware have discovered that an ancient gene—ribonucleotide reductase (RNR), which occurs in all cellular life—provides important biological insights into the characteristics ...

Recommended for you

Nanosafety research: The quest for the gold standard

Oct 29, 2014

Empa toxicologist Harald Krug has lambasted his colleagues in the journal Angewandte Chemie. He evaluated several thousand studies on the risks associated with nanoparticles and discovered no end of shortc ...

New nanodevice to improve cancer treatment monitoring

Oct 27, 2014

In less than a minute, a miniature device developed at the University of Montreal can measure a patient's blood for methotrexate, a commonly used but potentially toxic cancer drug. Just as accurate and ten ...

Molecular beacons shine light on how cells 'crawl'

Oct 24, 2014

Adherent cells, the kind that form the architecture of all multi-cellular organisms, are mechanically engineered with precise forces that allow them to move around and stick to things. Proteins called integrin ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.