Stretching DNA to the Limit: DNA damage in a new light

Apr 20, 2007

It has long been known that UV light can damage DNA, reducing its ability to replicate and interact with proteins, and often resulting in the development of skin cancers. However, not much is known about how the elasticity of DNA strands is altered upon exposure to UV light. Now a group of researchers at Duke University have developed a method to measure changes in the mechanical properties of DNA upon irradiation with UV light.

Piotr Marszalek and his colleagues have conducted single-molecule force spectroscopy measurements on viral DNA, which show the unraveling of the DNA double helix upon exposure to UV irradiation. The researchers essentially pick up individual DNA molecules with the tip of a scanning probe microscope and stretch it while measuring the forces generated.

These “stretch—release” measurements enable the accurate determination of changes in the elasticity of the DNA strands. Upon exposure to UV light, the force profile of the viral DNA changes dramatically in a dose-dependent manner. The force curve of intact DNA is characterized by a plateau region. This characteristic plateau is drastically reduced in width with increasing exposure to UV light.

UV light induces the crosslinking of the constituent DNA bases within the polynucleotide chains, as well as causes the formation of lesions by linking together the adjacent strands. The small changes in structure induced by this crosslinking can very profoundly affect the ability of DNA to recognize specific molecules, and can thus completely disrupt its ability to replicate and interact with the transcriptional machinery to synthesize proteins.

Marszalek and his colleagues have also examined synthetic DNA to figure out the extent to which different bases are affected by UV light. They conclude that the changes in the force profile of viral DNA exposed to UV light are due to the local unwinding of the double helix in some regions arising from the massive formation of crosslinked structures.

“These are the first measurements that establish a relationship between DNA nanomechanics and damage”, said Marszalek. He believes that this work paves the way for using stretch—release force spectroscopy measurements in DNA diagnostics.

Citation: Piotr E. Marszalek, Nanomechanical Fingerprints of UV Damage To DNA, Small 2007, 3, No. 5, 809–813, doi: 10.1002/smll.200600592

Source: Wiley-VCH

Explore further: Innovative strategy to facilitate organ repair

add to favorites email to friend print save as pdf

Related Stories

NASA to conduct unprecedented twin experiment

Apr 11, 2014

Consider a pair of brothers, identical twins. One gets a job as an astronaut and rockets into space. The other gets a job as an astronaut, too, but on this occasion he decides to stay home. After a year ...

Researchers show fruit flies have latent bioluminescence

Apr 10, 2014

New research from Stephen C. Miller, PhD, associate professor of biochemistry and molecular pharmacology, shows that fruit flies are secretly harboring the biochemistry needed to glow in the dark—otherwise ...

New functions for 'junk' DNA?

Mar 31, 2014

DNA is the molecule that encodes the genetic instructions enabling a cell to produce the thousands of proteins it typically needs. The linear sequence of the A, T, C, and G bases in what is called coding ...

Exploring the natural enemies of insect pests

Mar 27, 2014

A method of investigating whether aphid pests have been targeted by their gruesome enemies could shed new light on how farmland organisms interact, and potentially help protect important food crops.

The promise and peril of nanotechnology

Mar 26, 2014

Scientists at Northwestern University have found a way to detect metastatic breast cancer by arranging strands of DNA into spherical shapes and using them to cover a tiny particle of gold, creating a "nano-flare" ...

Recommended for you

Innovative strategy to facilitate organ repair

Apr 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Physicists create new nanoparticle for cancer therapy

Apr 16, 2014

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

User comments : 0

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...