Atoms Fly Apart in Direct Crystal Melting

Apr 19, 2007
Atoms Fly Apart in Direct Crystal Melting
Photo courtesy of CONTAX images.

Using an intense laser and ultra-fast x-rays, Stanford Synchrotron Radiation Laboratory (SSRL) researchers have observed the atomic events involved in rapid crystal melting.

Ordinary thermal melting determines the fate of an ice cube in a cup of tea or an icicle out in the blazing sun. The slow-acting heat causes atomic nuclei within the ice to vibrate destructively, disrupting the chemical interactions between the atoms. This allows the ice to relax its shape from an ordered crystal to a disordered liquid.

At the Sub-Picosecond Pulse Source (SPPS), scientists used an alternative route to crystal melting that enabled them to make a "movie" of the atomic motions that lead to crystal disordering. The international collaboration used an ultra-fast, high-energy laser to rapidly heat the electrons in a crystal without heating the atomic nuclei; the laser warmed the outer electrons while leaving the heavy core of the atom cold. In this "electronically driven melting," the electrons gained energy and flew out of their regular orbit around the core, instantly breaking the chemical bonds they had shared with electrons from neighboring atoms.

Short bursts of x-rays provided by the SPPS measured the atomic positions of the atoms in a semiconductor material. The data, published recently in Physical Review Letters, revealed that when their bonds destabilized, the atoms moved apart from each other quickly, as if repelling each other. The semiconductor material had visible melting damage after being struck by the laser.

"This research provides verification that intense ultra-fast x-ray sources like the upcoming Linac Coherent Light Source (LCLS) will make possible the study of previously inaccessible material properties," said SSRL researcher Patrick Hillyard.

Source: by Heather Rock Woods, Stanford Linear Accelerator Center

Explore further: Mist-collecting plants may bioinspire technology to help alleviate global water shortages

Related Stories

Snowflakes become square with a little help from graphene

Mar 25, 2015

The breakthrough findings, reported in the journal Nature, allow better understanding of the counterintuitive behaviour of water at the molecular scale and are important for development of more efficient techno ...

Metal oxidation controlled by atomic surface steps

Mar 19, 2015

Rust never sleeps. Whether a reference to the 1979 Neil Young album or a product designed to protect metal surfaces, the phrase invokes the idea that corrosion from oxidation—the more general chemical name ...

New transitory form of silica observed

Mar 20, 2015

A Carnegie-led team was able to discover five new forms of silica under extreme pressures at room temperature. Their findings are published by Nature Communications.

Light as puppeteer

Mar 18, 2015

Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have demonstrated a more robust method for controlling single, micron-sized particles with light.

Recommended for you

Soft, energy-efficient robotic wings

8 hours ago

Dielectric elastomers are novel materials for making actuators or motors with soft and lightweight properties that can undergo large active deformations with high-energy conversion efficiencies. This has ...

Super sensitive measurement of magnetic fields

Mar 30, 2015

There are electrical signals in the nervous system, the brain and throughout the human body and there are tiny magnetic fields associated with these signals that could be important for medical science. Researchers ...

New idea for Dyson sphere proposed

Mar 30, 2015

(Phys.org)—A pair of Turkish space scientists with Bogazici University has proposed that researchers looking for the existence of Dyson spheres might be looking at the wrong objects. İbrahim Semiz and ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.