Atoms Fly Apart in Direct Crystal Melting

Apr 19, 2007
Atoms Fly Apart in Direct Crystal Melting
Photo courtesy of CONTAX images.

Using an intense laser and ultra-fast x-rays, Stanford Synchrotron Radiation Laboratory (SSRL) researchers have observed the atomic events involved in rapid crystal melting.

Ordinary thermal melting determines the fate of an ice cube in a cup of tea or an icicle out in the blazing sun. The slow-acting heat causes atomic nuclei within the ice to vibrate destructively, disrupting the chemical interactions between the atoms. This allows the ice to relax its shape from an ordered crystal to a disordered liquid.

At the Sub-Picosecond Pulse Source (SPPS), scientists used an alternative route to crystal melting that enabled them to make a "movie" of the atomic motions that lead to crystal disordering. The international collaboration used an ultra-fast, high-energy laser to rapidly heat the electrons in a crystal without heating the atomic nuclei; the laser warmed the outer electrons while leaving the heavy core of the atom cold. In this "electronically driven melting," the electrons gained energy and flew out of their regular orbit around the core, instantly breaking the chemical bonds they had shared with electrons from neighboring atoms.

Short bursts of x-rays provided by the SPPS measured the atomic positions of the atoms in a semiconductor material. The data, published recently in Physical Review Letters, revealed that when their bonds destabilized, the atoms moved apart from each other quickly, as if repelling each other. The semiconductor material had visible melting damage after being struck by the laser.

"This research provides verification that intense ultra-fast x-ray sources like the upcoming Linac Coherent Light Source (LCLS) will make possible the study of previously inaccessible material properties," said SSRL researcher Patrick Hillyard.

Source: by Heather Rock Woods, Stanford Linear Accelerator Center

Explore further: Spin-based electronics: New material successfully tested

add to favorites email to friend print save as pdf

Related Stories

The future of ultrashort laser pulses

9 hours ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

Atomic structure of key muscle component revealed

5 hours ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Finding the 'heart' of an obstacle to superconductivity

Jul 23, 2014

A team at Cornell and Brookhaven National Laboratory has discovered that previously observed density waves that seem to suppress superconductivity are linked to an electronic "broken symmetry," offering an ...

Designing exascale computers

Jul 23, 2014

"Imagine a heart surgeon operating to repair a blocked coronary artery. Someday soon, the surgeon might run a detailed computer simulation of blood flowing through the patient's arteries, showing how millions ...

A crystal wedding in the nanocosmos

Jul 23, 2014

Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Vienna University of Technology and the Maria Curie-Skłodowska University Lublin have succeeded in embedding nearly perfect semiconductor ...

Recommended for you

Spin-based electronics: New material successfully tested

3 hours ago

Spintronics is an emerging field of electronics, where devices work by manipulating the spin of electrons rather than the current generated by their motion. This field can offer significant advantages to computer technology. ...

A transistor-like amplifier for single photons

Jul 29, 2014

Data transmission over long distances usually utilizes optical techniques via glass fibres – this ensures high speed transmission combined with low power dissipation of the signal. For quite some years ...

User comments : 0