Future Space Telescopes Could Detect Earth Twin

Apr 11, 2007
Future Space Telescopes Could Detect Earth Twin
Three simulated planets -- one as bright as Jupiter, one half as bright as Jupiter and one as faint as Earth -- stand out plainly in this image created from a sequence of 480 images captured by the High Contrast Imaging Testbed at JPL. A roll-subtraction technique, borrowed from space astronomy, was used to distinguish planets from background light. The asterisk marks the location of the system's simulated star. Image credit: NASA/JPL-Caltech

For the first time ever, NASA researchers have successfully demonstrated in the laboratory that a space telescope rigged with special masks and mirrors could snap a photo of an Earth-like planet orbiting a nearby star. This accomplishment marks a dramatic step forward for missions like the proposed Terrestrial Planet Finder, designed to hunt for an Earth twin that might harbor life.

Trying to image an exoplanet - a planet orbiting a star other than the sun - is a daunting task, because its relatively dim glow is easily overpowered by the intense glare of its much bigger, brighter parent star. The challenge has been compared to looking for a firefly next to a searchlight.

Now, two researchers at NASA's Jet Propulsion Laboratory in Pasadena, Calif., have shown that a fairly simple coronagraph - an instrument used to "mask" a star's glare - paired with an adjustable mirror, could enable a space telescope to image a distant planet 10 billion times fainter than its central star.

"Our experiment demonstrates the suppression of glare extremely close to a star, clearing a field dark enough to allow us to see an Earth twin. This is at least a thousand times better than anything demonstrated previously," said John Trauger, lead author of a paper appearing in the April 12 issue of Nature. This paper describes the system, called the High Contrast Imaging Testbed, and how the technique could be used with a telescope in space to see exoplanets. The lab experiment used a laser as a simulated star, with fainter copies of the star serving as "planets."

To date, scientists have used various techniques to detect more than 200 exoplanets. Most of these exoplanets are from five to 4,000 times more massive than Earth, and are either too hot, too cold or too much of a giant gas ball to be considered likely habitats for life. So far, no one has managed to capture an image of an exoplanetary system that resembles our own solar system. Scientists are eager to take a closer look at nearby systems, to hunt for and then characterize any Earth-like planets - those with the right size, orbit and other traits considered friendly for life.

In the lab demonstration, the High Contrast and Imaging Testbed overcame two significant hurdles that all telescopes face when trying to image exoplanets - diffracted and scattered light.

When starlight hits the edge of a telescope's primary mirror, it becomes slightly disturbed, producing a pattern of rings or spikes surrounding the major source of light in the focused image. This diffracted light can completely obscure any planets in the field of view.

To address this problem, Trauger and his colleagues at JPL fashioned a pair of masks for their system. The first, which resembles a blurry barcode, directly blocks most of the starlight, while the second clears away the diffracted rings and spikes. The combination creates enough darkness to allow the light of any planets to shine through.

"Mathematically, and sort of magically, this coronagraph blocks both the central star and its rings," said Wesley Traub of JPL, co-author of the new paper and Terrestrial Planet Finder project scientist.

Scattered light presents the additional hurdle. Minor ripples on a telescope's mirror produce "speckles" - faint copies of a star, shifted to the side, which can also hide planets. In the High Contrast Imaging Testbed, a deformable mirror the size of a large coin limits scattered light. With a surface that can be altered ever so slightly by computer-controlled actuators, this mirror compensates for the effects of minor imperfections in the telescope and instrument.

"This result is important because it points the way to building a space telescope with the ability to detect and characterize Earth-like planets around nearby stars," Traub said.

For their next steps, Trauger and Traub plan to improve the suppression of speckles by a factor of 10, and extend the method to accommodate many wavelengths of light simultaneously.

Source: NASA

Explore further: Astronomer confirms a new "Super-Earth" planet

add to favorites email to friend print save as pdf

Related Stories

Kepler proves it can still find planets

Dec 18, 2014

To paraphrase Mark Twain, the report of the Kepler spacecraft's death was greatly exaggerated. Despite a malfunction that ended its primary mission in May 2013, Kepler is still alive and working. The evidence ...

Bright lights: big cities at night

Dec 17, 2014

As the days grow shorter and the temperatures drop in Europe, test your geography skills in the warmth of your home – while helping scientists to pinpoint light pollution.

Recommended for you

Image: Multicoloured view of supernova remnant

7 hours ago

Most celestial events unfold over thousands of years or more, making it impossible to follow their evolution on human timescales. Supernovas are notable exceptions, the powerful stellar explosions that make ...

Ultra-luminous X-ray sources in starburst galaxies

7 hours ago

Ultra-luminous X-ray sources (ULXs) are point sources in the sky that are so bright in X-rays that each emits more radiation than a million suns emit at all wavelengths. ULXs are rare. Most galaxies (including ...

When a bright light fades

7 hours ago

Astronomer Charles Telesco is primarily interested in the creation of planets and stars. So, when the University of Florida's giant telescope was pointed at a star undergoing a magnificent and explosive death, ...

Image: Horsehead nebula viewed in infrared

8 hours ago

Sometimes a horse of a different color hardly seems to be a horse at all, as, for example, in this newly released image from NASA's Spitzer Space Telescope. The famous Horsehead nebula makes a ghostly appearance ...

The Milky Way's new neighbour

8 hours ago

The Milky Way, the galaxy we live in, is part of a cluster of more than 50 galaxies that make up the 'Local Group', a collection that includes the famous Andromeda galaxy and many other far smaller objects. ...

Image: Hubble sweeps a messy star factory

8 hours ago

This sprinkle of cosmic glitter is a blue compact dwarf galaxy known as Markarian 209. Galaxies of this type are blue-hued, compact in size, gas-rich, and low in heavy elements. They are often used by astronomers ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.