FSU's Lab to Build World's Strongest Magnet for 'Neutron Scattering' Experiments

Apr 03, 2007

The Hahn-Meitner Institute in Berlin has contracted with the National High Magnetic Field Laboratory and Florida State University to build an $8.7-million hybrid magnet for "neutron scattering" experiments.

When finished in 2011, the new, high-field magnet, which is based on the magnet lab's Series-Connected Hybrid concept, will be housed at the Berlin Neutron Scattering Center. The magnet will produce a magnetic field between 25 tesla and 30 tesla - more than half a million times stronger than the Earth's magnetic field. It will be the world's strongest magnet for neutron experiments, eclipsing the 15-tesla system presently at the Hahn-Meitner Institute (HMI).

The magnet lab's Magnet Science & Technology division has been working with Hahn-Meitner since the summer of 2005, recently completing a design study. The results of that study were strong enough to convince the review committee of the German Helmholtz Association and the Federal Ministry of Education and Research that the investment in the new technology was worth the cost.

"Part of the challenge in science is figuring out how to maximize resources," said Mark Bird, interim director of the Magnet Science & Technology division. "We can't always afford to bring the tools and techniques to the magnets; sometimes we have to bring the magnets to the tools to advance the science."

The lab's Series-Connected Hybrid combines copper-coil "resistive" magnet technology in the magnet's interior with a superconducting magnet, cooled with liquid helium, on the exterior. The copper-coil insert is powered by an electrical current, while the superconducting outsert conducts electricity without resistance as long as it is kept colder than 450 degrees below zero Fahrenheit. By combining the power supplies of these two technologies, engineers can produce extremely high magnetic fields using just one-third of the power required by traditional magnets.

The version that magnet lab engineers will build for HMI is different in that its bore, or experimental space, will be conical to allow neutrons to be scattered through large angles. It also will be horizontal, as opposed to the traditional vertical bore of most high-field magnets. These modifications make the magnet ideal for neutron scattering experiments, which are among the best methods for probing atoms to better understand the structure of materials.

"With this major piece of equipment, the Hahn-Meitner Institute itself becomes a magnet, pulling in researchers from around the world to Berlin," said Thomas Rachel, parliamentary state secretary of the German Federal Ministry of Education and Research.

With this new magnet, scientists will be able to carry out experiments that aren't currently possible. One of the greatest challenges in condensed matter physics is to develop a comprehensive theory describing high-temperature superconductors. The combination of neutrons and high magnetic fields will allow scientists to study the normal state of high-temperature superconductors in the low-temperature limit. In addition, it will be possible to probe hydrogen structure in both biological and hydrogen-storage materials.

The project is funded primarily through the German Federal Ministry for Education and Research. In addition to the $8.7-million magnet, the Germans are putting $14.4 million into infrastructure, such as cooling and current supplies, needed to run a high-field magnet. The agreement will be administered by the Florida State University Magnet Research and Development Co., a not-for-profit direct support organization of the magnet lab.

The announcement comes just six months after the National Science Foundation awarded the magnet lab an $11.7-million grant to build a 36-tesla Series-Connected Hybrid, expected to come online in 2011, for the Tallahassee facility. Together with John Hopkins University, the lab also is conducting an NSF-funded engineering design of a split-gap Series-Connected Hybrid for the Spallation Neutron Source, a neutron facility in Oak Ridge, Tenn.

Source: Florida State University

Explore further: New insights found in black hole collisions

add to favorites email to friend print save as pdf

Related Stories

New world record for a neutron scattering magnet

Oct 30, 2014

A unique magnet developed by the Florida State University-headquartered National High Magnetic Field Laboratory (MagLab) and Germany's Helmholtz Centre Berlin (HZB) has reached a new world record for a neutron ...

A magnetic monster's dual personality

Jul 16, 2012

(Phys.org) -- Is it a magnetar or is it a pulsar? A second member of a rare breed of dead, spinning star has been identified thanks to an armada of space-based X-ray telescopes, including ESA’s XMM-Newton. ...

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.