Novel experiments on cement yield concrete results

Apr 02, 2007

Using a brace of the most modern tools of materials research, a team from the National Institute of Standards and Technology and Northwestern University has shed new light on one of mankind’s older construction materials—cement.

Their refinements to our understanding of how cement and concrete actually work, reported this week in Nature Materials, ultimately may make possible improvements in the formulation and use of cement that could save hundreds of millions of dollars in annual maintenance and repair costs for concrete structures and the country’s infrastructure.

Cement may be the world’s most widely used manufactured material—more than 11 billion metric tons are consumed each year—but it also is one of the more complex. And while it was known to the Romans, who used it to good effect in the Colosseum and Pantheon, questions still remain as to just how it works, in particular how it is structured at the nano- and microscale, and how this structure affects its performance.

Cement is something of a paradox. It requires just the right amount of water to form properly—technically it’s held together by a gel, a complex network of nanoparticles called calcium silicate hydrate (C-S-H) that binds a significant amount of water within its structure. But once the cement has set, the C-S-H structure retains a tough, unchanging integrity for centuries, even in contact with water. To date, attempts to pinpoint the amounts and different roles of water within the C-S-H in cement paste have required taking the water out, either by drying or chemical methods. The NIST/Northwestern researchers instead combined structural data from small-angle neutron scattering experiments at the NIST Center for Neutron Research and from an ultrasmall-angle X-ray scattering instrument built by NIST at the Advanced Photon Source at Argonne National Laboratory. Their experiments are the first to classify water by its location in the cured cement.

As a result, the researchers were able to distinguish—and measure—the difference between water physically bound within the internal structure of the solid C-S-H nanoparticles and adsorbed or liquid water between the nanoparticles. They also measured a nanoscale calcium hydroxide structure that co-exists with the C-S-H gel.

The new data, which imply significantly different values for the formula and density of the C-S-H gel than previously supposed, have implications for defining the chemically active surface area within cement, and for predicting concrete properties. They also may lead to a better understanding of the contribution of the nanoscale structure of cement to its durability, and how to improve it.

Source: NIST

Explore further: How we can substitute critical raw materials in catalysis, electronics and photonics

add to favorites email to friend print save as pdf

Related Stories

Crush those clinkers while they're hot

Jan 13, 2015

Making cement is a centuries-old art that has yet to be perfected, according to researchers at Rice University who believe it can be still more efficient.

Key to longevity of imperial Roman monuments

Dec 16, 2014

No visit to Rome is complete without a visit to the Pantheon, Trajan's Markets, the Colosseum, or the other spectacular examples of ancient Roman concrete monuments that have stood the test of time and the ...

Second time through, Mars rover examines chosen rocks

Nov 20, 2014

(Phys.org) —NASA's Curiosity Mars rover has completed a reconnaissance "walkabout" of the first outcrop it reached at the base of the mission's destination mountain and has begun a second pass examining ...

Recommended for you

Semiconductor miniaturisation with 2D nanolattices

Feb 26, 2015

A European research project has made an important step towards the further miniaturisation of nanoelectronics, using a highly-promising new material called silicene. Its goal: to make devices of the future ...

Magnetic nanoparticles enhance performance of solar cells

Feb 25, 2015

Magnetic nanoparticles can increase the performance of solar cells made from polymers - provided the mix is right. This is the result of an X-ray study at DESY's synchrotron radiation source PETRA III. Adding ...

Researchers enable solar cells to use more sunlight

Feb 25, 2015

Scientists of the University of Luxembourg and of the Japanese electronics company TDK report progress in photovoltaic research: they have improved a component that will enable solar cells to use more energy of the sun and ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.