Probing Question: Why doesn't it thunderstorm in the winter?

Mar 29, 2007 By Meghan Holohan

Some parents tell their children that thunderstorms occur when God goes bowling, but an observant youngster might wonder why The Big Guy only bowls in the summertime.

The short answer? "In the summer there's a lot more moisture in the air," said Yvette Richardson, assistant professor of meteorology at Penn State.

"Any thunderstorm requires moisture, instability and some mechanism for lifting, such as a front," Richardson continued. "It is harder to get all of these to come together in the winter."

Thunderstorms literally begin at the ground level: The sun's rays are absorbed by the Earth, which warms the air above it. As these updrafts of heated air rise, they carry along water vapor, which -- as the warm air ascends and cools -- condenses into liquid, releasing latent heat.

This heat further warms the air, ultimately creating low hanging cumulus clouds -- the clouds that resemble fluffy cotton balls. Explained Richardson, "The warmed air in the cloud is less dense than the surrounding air, making it buoyant."

This buoyant air rises quickly, starting the formation of the thunderstorm. As the cumulus cloud grows higher and bigger, the moist air inside of it accelerates upward until it reaches a level where it is colder than the surrounding air. Heavy droplets of water and ice particles darken the cloud and spread out horizontally to transform the fluffy cumulus shape into a cumulonimbus -- or "anvil-cloud," so named for its typical shape, flattened at its top with a heavy base.

Most importantly, hailstones and ice particles collide with each other, transferring charge in the process. The hailstones fall to the lower portion of the cloud, giving it a negative charge. The ice crystals rise upward, carrying a positive electric charge to the cloud's upper end. This "charge separation" grows more intense with each collision inside the cloud -- so intense, in fact, that the negative charge at the cloud's lower end actually repels electrons at the Earth's surface deeper into the planet. Consequently, the ground becomes positively charged and the electric field cuts a conductive path between the cloud and the Earth. The result? A high voltage surge of electrons, otherwise known as lightning.

The accompanying boom, called thunder, comes from sound waves created when the air is heated suddenly by the lightning and then cools rapidly.

Typically, after about an hour the storm becomes dominated by downward motion and an ordinary storm ends, said Richardson. Although thunderstorms are a summertime phenomenon, she noted, in some rare situations a winter thundersnow can occur. This happens most often near the Great Lakes and other large bodies of water, when a cold front passes over a warm surface, causing the instability needed for a thunderstorm. If the temperature is cold enough, snow falls instead of rain.

In February 2004, thundersnows occurred in association with the blizzard dubbed White Juan, which struck Halifax, Nova Scotia, just months after Hurricane Juan had destroyed parts of that city. A low-pressure storm formed off the east coast of the United States, intensifying as it moved north. High-gusting winds and record snowfalls blanketed the whole Atlantic Canadian region. The winds, temperatures and low-pressure areas made for a perfect unstable environment.

During thundersnows, the snow dampens the thunder so it sounds like a muffled timpani drum rather than the loud cracking and booming of a summer thunderstorm. Bolts of lightning slice through the sky, creating an eerie look.

"It's kind of neat. It's not what you expect," explained Richardson who witnessed thundersnow in Wisconsin. "You can see lightning and hear thunder just like a regular thunderstorm."

Source: Research Penn State

Explore further: Soil nutrients may limit ability of plants to slow climate change

Related Stories

NASA satellite sees a rooster in Tropical Cyclone Solo

Apr 10, 2015

Tropical Cyclone Solo looks like a rooster in visible and infrared imagery taken from NASA's Aqua satellite on April 10. Solo formed in the Coral Sea and is giving several islands something to crow about, ...

NASA spots an eye in Tropical Cyclone Ikola

Apr 06, 2015

Tropical Cyclone Ikola formed quickly on April 6 and quickly strengthen to hurricane-force in the Southern Indian Ocean. NASA's Aqua satellite passed overhead after the storm developed an eye.

Recommended for you

Extending climate predictability beyond El Nino

59 minutes ago

Tropical Pacific climate variations and their global weather impacts may be predicted much further in advance than previously thought, according to research by an international team of climate scientists ...

Ocean currents impact methane consumption

17 hours ago

Large amounts of methane - whether as free gas or as solid gas hydrates - can be found in the sea floor along the ocean shores. When the hydrates dissolve or when the gas finds pathways in the sea floor to ...

Study shines new light on the source of diamonds

23 hours ago

A team of specialists from four Australian universities, including the University of Western Australia, has established the exact source of a diamond-bearing rock for the first time.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.