Faulted modeling

Mar 23, 2007

Factoring in crustal strength changes along the San Andreas Fault would improve the predictive models that researchers use to understand the likelihood and intensity of earthquakes there. That's the conclusion from a study published in the April issue of Geology titled, "Diffuse interseismic deformation across the Pacific-North America plate boundary."

Currently, it is standard practice for universities and government agencies to measure crustal movement that occurs within Southern California using precise Global Positioning System (GPS) and other highly accurate tools that project movements in millimeters per year. In this study, Dr. Shimon Wdowinski, research associate professor at the University of Miami Rosenstiel School of Marine & Atmospheric Science, and scientists from Scripps Institution of Oceanography used 840 very precise measurements of crustal movements collected in the past 25 years.

These measurements were conducted mainly in southern California, to study the nature of steady crustal movements occurring in between large earthquakes within this same zone. By using a geometrical technique, they found a disparity between the observations and a mechanical model in a narrow band along the San Andreas Fault and in the Mojave Block.

"This suggests that crustal changes and fault segments that haven't yet been included in models really should be considered in future ones," Wdowinski said. "By adding in this information to the models, scientists will improve their assessments of potential earthquake hazards."

The steady motion between the Pacific and North American tectonic plates deforms a wide region in the western United States, extending over California, Arizona, Nevada, and Utah. The San Andreas Fault absorbs most of the deformation. The deformation increases the stress level within the Earth's crust, mainly along fault segments. Once the stresses reach high enough values, which cannot be supported by the crust, that is when faulting occurs and the excess stress is released by an earthquake.

Source: University of Miami Rosenstiel School of Marine & Atmospheric Science

Explore further: Thousands of intense earthquakes rock Iceland

add to favorites email to friend print save as pdf

Related Stories

California faults moved quietly after Baja quake

May 01, 2014

(Phys.org) —A new NASA study finds that a major 2010 earthquake in northern Mexico triggered quiet, non-shaking motions on several Southern California faults that released as much energy as a magnitude ...

New explanation for slow earthquakes on San Andreas

Jun 03, 2013

(Phys.org) —New Zealand's geologic hazards agency reported this week an ongoing, "silent" earthquake that began in January is still going strong. Though it is releasing the energy equivalent of a 7.0 earthquake, ...

Shedding light on the earthquake situation

Feb 20, 2013

Researchers from the Swiss Seismological Service have worked together with the Seismology and Geodynamics group at ETH Zurich and with local support in Bhutan to install a temporary seismological network. They plan to use ...

Scientist discovers plate tectonics on Mars

Aug 09, 2012

(Phys.org) -- For years, many scientists had thought that plate tectonics existed nowhere in our solar system but on Earth. Now, a UCLA scientist has discovered that the geological phenomenon, which involves ...

Recommended for you

NASA sees Depression 12-E become Tropical Storm Lowell

13 hours ago

In less than 24 hours after Tropical Depression 12-E was born in the eastern Pacific Ocean it strengthened into Tropical Storm Lowell. NOAA's GOES-West and NASA's Aqua satellite captured infrared images of ...

Why global warming is taking a break

14 hours ago

The average temperature on Earth has barely risen over the past 16 years. ETH researchers have now found out why. And they believe that global warming is likely to continue again soon.

User comments : 0