First science from the Large Binocular Telescope

Mar 15, 2007 By William G. Gilroy
First science from the Large Binocular Telescope

An international team headed by University of Notre Dame astrophysicist Peter M. Garnavich has reported the first scientific result from the Large Binocular Telescope (LBT). The team imaged a distant “afterglow” of gamma ray burst “070125.”

The $120 million LBT is located atop Mount Graham, a 10,700-foot mountain in southeastern Arizona. The team of observers used the LBT’s “left-side” primary mirror and its “blue” camera to capture a detailed image of the afterglow of the gamma ray burst.

Gamma ray bursts are huge blasts of gamma rays that last for seconds or minutes. The blasts drive shocks into the surrounding gas that generate light from X-rays to radio waves and these “afterglows” are visible for just a few hours to a few days. The explosions are distant, often more than halfway back to the Big Bang. GRB 070125 was more than 7 billion light years away.

Garnavich’s team observed the gamma ray burst Feb. 21, almost a month after it exploded. The detection caught the burst at 26th magnitude. The magnitude scale is used by astronomers to measure the brightness of objects in space. The human eye can detect stars as faint as the 6th magnitude on a clear, dark night. The LBT was able to see a source that was 100 million times fainter than the limit of human vision.

“I have never before observed anything from the ground at the 26th magnitude and the seeing conditions at the LBT were not ideal at the time of the gammas ray burst observation, so we can, and will, go even deeper with this telescope,” Garnavich said.

The visible light of the gamma ray bursts afterglows are critical in understanding how gamma rays are generated in bursts. By following the optical decay, astrophysicists have been able to show that the energy comes out in a narrow beam and the bursts are only seen if the beam is aimed at the Earth.

“By studying the fading afterglow light, we show that the blast accelerates particles to nearly the speed of light and our deep images tell us exactly the opening angle of the jet aimed in our direction,” Garnavich said.

Garnavich was a member of a team of astronomers that in 2002 helped solve the mystery of one kind of gamma ray burst. The researchers found that the long blasts occur when stars explode and their cores collapse to form black holes. GRB 070125 probably created a black hole in a supernova collapse, but it is too distant to detect the explosion.

The LBT is unlike any other telescope because it uses twin 8.4-meter (27.6-foot) honeycomb mirrors that sit on a single mount, allowing it to view with the sharpness of a 23-meter telescope. The LBT achieved “first light,” or the first images of the night sky, in 2005 after the left mirror (called SX for “sinistra,” or left, in Italian) was installed and the blue-sensitive camera was taking pictures. The telescope is expected to be fully operational, with both of its enormous eyes wide open, later this year.

The LBT was built by an consortium that includes scientists from Notre Dame, the University of Arizona, Italy’s Istituto Nazionale di Astrofisica, Germany’s LBT Beteiligungsgesellschaft (representing the Max Planck Society), the Astrophysical Institute Potsdam, Heidelberg University, Ohio State University, the Universities of Minnesota and Virginia, and the Research Corporation.

Source: University of Notre Dame

Explore further: First potentially habitable Earth-sized planet confirmed: It may have liquid water

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

A sharp eye on Southern binary stars

17 hours ago

Unlike our sun, with its retinue of orbiting planets, many stars in the sky orbit around a second star. These binary stars, with orbital periods ranging from days to centuries, have long been the primary ...

Hubble image: A cross-section of the universe

18 hours ago

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Cosmologists weigh cosmic filaments and voids

21 hours ago

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

User comments : 0

More news stories

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Hubble image: A cross-section of the universe

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...