Australian discovery solves mystery of the Andes

Mar 14, 2007

A research team led by an ANU scientist has solved the mystery behind the formation of the Andes by discovering how the jostling of tectonic plate boundaries affects geological formations.

It’s been known for some time that the Andes mountain range in South America sits above a subduction zone, where one tectonic plate is sinking below its neighbouring plate. But until now, it hasn’t been clear how such a movement could result in the upward thrust that created the Andes.

The researchers’ findings were published in Nature today.

“It’s commonly understood that large mountain ranges occur when one continent collides with another,” explained team leader Dr Wouter Schellart from the Research School of Earth Sciences. “This kind of collision is responsible for the Himalayas, which have resulted from the Indian continent pushing up into Asia. But there’s no continent butting up against South America, so we needed to find a different explanation for the Andes.”

Using the modelling power of supercomputers, Dr Schellart and his colleagues Dr Justin Freeman at ANU and Dr Dave Stegman, Professor Louis Moresi and Mr David May at Monash University in Melbourne discovered that just as tectonic plates move, so too do the boundaries between them. As a subducting plate is drawn downward by gravity, it forces the boundary between the subducting plate and overriding plate to move. This means the boundaries between tectonic plates are constantly changing shape.

The researchers found that the width of the tectonic boundary determines the speed and direction of its migration, which will effect whether a mountain range or an ocean basin forms above the activity. They also found that the width determines the shape of subduction zones, which thereby explains the curvature of deep ocean trenches that mark the surface expression of these subduction zones.

“So in the southwest Pacific, near New Zealand, the tectonic boundary is moving backwards very fast, in this case back towards the east. That causes the overriding plate to extend and form a deep basin,” Dr Schellart said. “But along the west coast of South America, the boundary is not moving backward very fast, and in the centre it’s actually moving forward very slowly. The overriding plate is moving toward the boundary itself. Hence you get compression, and the formation of the Andes.”

Dr Schellart said the tectonic boundary at the Andes can support such compressive behaviour because the zone is the widest of its kind on the planet, running for some 7,400 km. If the boundary fragmented, the upward thrust of the Andes would cease. But the team’s models predict that the world’s longest mountain range is likely to continue its upward thrust for thousands of years.

Source: Australian National University

Explore further: NASA's HS3 mission spotlight: The HIRAD instrument

add to favorites email to friend print save as pdf

Related Stories

ATV-5 loaded and locked

3 minutes ago

ESA's fifth Automated Transfer Vehicle is now scheduled for launch to the International Space Station at 23:44 GMT on 29 July (01:44 CEST 30 July) on an Ariane 5 rocket from Europe's Spaceport in Kourou, ...

Surveillance a part of everyday life

13 minutes ago

Details of casual conversations and a comprehensive store of 'deleted' information were just some of what Victoria University of Wellington students found during a project to uncover what records companies ...

European Central Bank hit by data theft

43 minutes ago

(AP)—The European Central Bank said Thursday that email addresses and other contact information have been stolen from a database that serves its public website, though it stressed that no internal systems or market-sensitive ...

The most precise measurement of an alien world's size

44 minutes ago

Thanks to NASA's Kepler and Spitzer Space Telescopes, scientists have made the most precise measurement ever of the radius of a planet outside our solar system. The size of the exoplanet, dubbed Kepler-93b, ...

Recommended for you

Fires in Central Africa During July 2014

8 hours ago

Hundreds of fires covered central Africa in mid-July 2014, as the annual fire season continues across the region. Multiple red hotspots, which indicate areas of increased temperatures, are heavily sprinkled ...

NASA's HS3 mission spotlight: The HIRAD instrument

18 hours ago

The Hurricane Imaging Radiometer, known as HIRAD, will fly aboard one of two unmanned Global Hawk aircraft during NASA's Hurricane Severe Storm Sentinel or HS3 mission from Wallops beginning August 26 through ...

Fires in the Northern Territories July 2014

Jul 23, 2014

Environment Canada has issued a high health risk warning for Yellowknife and surrounding area because of heavy smoke in the region due to forest fires. In the image taken by the Aqua satellite, the smoke ...

User comments : 0