Australian discovery solves mystery of the Andes

Mar 14, 2007

A research team led by an ANU scientist has solved the mystery behind the formation of the Andes by discovering how the jostling of tectonic plate boundaries affects geological formations.

It’s been known for some time that the Andes mountain range in South America sits above a subduction zone, where one tectonic plate is sinking below its neighbouring plate. But until now, it hasn’t been clear how such a movement could result in the upward thrust that created the Andes.

The researchers’ findings were published in Nature today.

“It’s commonly understood that large mountain ranges occur when one continent collides with another,” explained team leader Dr Wouter Schellart from the Research School of Earth Sciences. “This kind of collision is responsible for the Himalayas, which have resulted from the Indian continent pushing up into Asia. But there’s no continent butting up against South America, so we needed to find a different explanation for the Andes.”

Using the modelling power of supercomputers, Dr Schellart and his colleagues Dr Justin Freeman at ANU and Dr Dave Stegman, Professor Louis Moresi and Mr David May at Monash University in Melbourne discovered that just as tectonic plates move, so too do the boundaries between them. As a subducting plate is drawn downward by gravity, it forces the boundary between the subducting plate and overriding plate to move. This means the boundaries between tectonic plates are constantly changing shape.

The researchers found that the width of the tectonic boundary determines the speed and direction of its migration, which will effect whether a mountain range or an ocean basin forms above the activity. They also found that the width determines the shape of subduction zones, which thereby explains the curvature of deep ocean trenches that mark the surface expression of these subduction zones.

“So in the southwest Pacific, near New Zealand, the tectonic boundary is moving backwards very fast, in this case back towards the east. That causes the overriding plate to extend and form a deep basin,” Dr Schellart said. “But along the west coast of South America, the boundary is not moving backward very fast, and in the centre it’s actually moving forward very slowly. The overriding plate is moving toward the boundary itself. Hence you get compression, and the formation of the Andes.”

Dr Schellart said the tectonic boundary at the Andes can support such compressive behaviour because the zone is the widest of its kind on the planet, running for some 7,400 km. If the boundary fragmented, the upward thrust of the Andes would cease. But the team’s models predict that the world’s longest mountain range is likely to continue its upward thrust for thousands of years.

Source: Australian National University

Explore further: Asian monsoon much older than previously thought

add to favorites email to friend print save as pdf

Related Stories

Faraway moon mimics Earth tectonics

Sep 07, 2014

Jupiter's icy moon Europa may have active tectonic plates similar to those that shape the Earth, which had long been thought unique in this respect, scientists said Sunday.

Mantle plumes crack continents

Sep 04, 2014

Using a simulation with an unprecedentedly high resolution, Earth scientists from University of Paris VI and ETH Zurich have shown that magma columns in the Earth's interior can cause continental breakup—but ...

Deep Alpine Fault sensitive to nearby earthquakes

Aug 25, 2014

(Phys.org) —Victoria University of Wellington researchers have discovered that seismic waves produced by earthquakes happening several hundred kilometres away trigger activity deep beneath the Alpine Fault.

Severe drought is causing the western US to rise

Aug 21, 2014

The severe drought gripping the western United States in recent years is changing the landscape well beyond localized effects of water restrictions and browning lawns. Scientists at Scripps Institution of ...

Recommended for you

Asian monsoon much older than previously thought

11 hours ago

The Asian monsoon already existed 40 million years ago during a period of high atmospheric carbon dioxide and warmer temperatures, reports an international research team led by a University of Arizona geoscientist.

Rules of thumb for climate change turned upside down

11 hours ago

With a new analysis of land regions, ETH climate researcher are challenging the general climate change paradigm that dry regions are getting drier and wet regions are getting wetter. In some regions they ...

Tropical Storm Odile taken on by two NASA satellites

Sep 12, 2014

As Tropical Storm Odile continues to affect Mexico's west coast and stir up dangerous surf, NASA's TRMM and Aqua satellites provided forecasters information on clouds and rainfall in the coast-hugging storm. ...

User comments : 0