Creation of a magnetic field in a turbulent fluid

Mar 10, 2007

Understanding the origin and behavior of the magnetic fields of planets and stars is the goal of research being carried out by many teams from all over the world. The VKS collaboration (CEA, CNRS, Ecole normale supérieure in Lyon, Ecole normale supérieure in Paris) has succeeded in creating in the laboratory a magnetic field in a highly turbulent flow of liquid sodium.

Although the extreme conditions specific to astrophysical and geophysical environments cannot all be reproduced in the laboratory, the magnetic field observed shows remarkable similarities with magnetic fields observed in the cosmos. The findings represent a significant advance in the understanding of the mechanisms at work in the formation of natural magnetic fields. They are published in Physical Review Letters dated 26 January 2007.

Most of the astrophysical objects which surround us (planets, stars and galaxies) have a magnetic field, whose origin is poorly understood. Such magnetic fields can play a major role in the evolution of various structures throughout the Universe. The Earth's magnetic field, which is very probably caused by the movement of liquid iron in the core, not only makes compass needles point north, but also protects us from the harmful effects of cosmic rays and the solar wind.

As early as 1919, Larmor put forward the hypothesis that the Sun's magnetic field is generated by a "dynamo" effect, in other words by the movement of a fluid that conducts electricity. Because of their highly chaotic (turbulent) nature, the analysis of geophysical and astrophysical flows is beyond the current capacities of numerical simulations, and, until now, has thwarted all attempts at a theoretical approach.

It is only through experimental work that it is possible to reproduce the dynamo phenomenon with parameters that are similar to those that occur naturally. Following experiments carried out in 2000 by teams in Riga and Karlsruhe, the challenge facing the physicists was to show that the fully turbulent motion of a conducting liquid could spontaneously generate a magnetic field.

Since 1998, the VKS collaboration has been studying a highly turbulent flow produced by the movement of two turbines revolving in opposite directions in a cylinder filled with liquid sodium. Liquid sodium is an excellent conductor of electricity, while having a density similar to that of water, unlike many other metals which are much denser. In September 2006, the VKS experiment showed that, when the turbines revolve faster than a critical speed (1020 rpm), the flow spontaneously generates a magnetic field. This is the first time that such results have been observed in a highly turbulent medium.

The result proves that fluid dynamos continue to operate in the presence of strong turbulence of the kinds that occur under natural conditions. The achievement of the dynamo experiment under laboratory conditions opens up many new prospects. In particular, it will make it possible to study the energy balance involved in the production of a magnetic field as well as its dynamics. It may therefore be possible to understand the origin of the pseudoperiodic oscillations in the solar cycle or the irregular reversals of the Earth's magnetic field.

Source: CNRS

Explore further: Galaxy dust findings confound view of early Universe

add to favorites email to friend print save as pdf

Related Stories

Space exploration promises to be spectacular in 2015

Jan 06, 2015

There is no doubt that 2014 was a fantastic year for planetary sciences – the high points were the successful landing of Philae on comet 67P, the discovery of methane by the Curiosity rover on Mars and ...

Solar observatories face the prospect of being eclipsed

Dec 31, 2014

Motors whirred as a gleaming white dome slowly opened, allowing one of the premier solar telescopes in the world to track the magnetic fields and exploding flares of the sun. In a few hours, computers would translate that ...

Predicting daily space weather will help keep your GPS on target

Dec 04, 2014

It's well known that severe space weather events – which are quite rare – can have a negative impact on our use of Global Positioning System (GPS) enabled devices. But our research, published in Geophysical Research Letters, shows that another form of space weather – which occurs on ...

Recommended for you

Galaxy dust findings confound view of early Universe

23 hours ago

What was the Universe like at the beginning of time? How did the Universe come to be the way it is today?—big questions and huge attention paid when scientists attempt answers. So was the early-universe ...

Seeking cracks in the Standard Model

Jan 30, 2015

In particle physics, it's our business to understand structure. I work on the Large Hadron Collider (LHC) and this machine lets us see and study the smallest structure of all; unimaginably tiny fundamental partic ...

Building the next generation of efficient computers

Jan 29, 2015

UConn researcher Bryan Huey has uncovered new information about the kinetic properties of multiferroic materials that could be a key breakthrough for scientists looking to create a new generation of low-energy, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.