Fermions do not travel together, theory proved

Mar 10, 2007

Fermions tend to avoid each other and cannot "travel" in close proximity. Demonstrated by a French team at the Institut d'optique (CNRS), this result is described in detail in the January 25, 2007 issue of Nature. It marks a major advance in our understanding of phenomena at a quantum scale.

For many years, the theory of quantum mechanics stipulated that certain particles, the fermions , were incapable of "travelling" in close proximity. For example, in a jet of identical particles, the theory supposed that the distance between them was always greater than a given value, called the "correlation length".

Scientists in the Charles Fabry Laboratory at the Institut d'optique, working with a team from the Free University in Amsterdam, have recently shown that this "anti-bunching" property, which it had never been possible to demonstrate hitherto, does indeed exist. It is as if the particles repel each other, even though interactions between them are negligible. In fact, this "anti-bunching" is due to quantum interferences which forbid the probability of finding two very close particles.

To arrive at this conclusion, the scientists compared the behaviour of fermions with that of bosons , under identical conditions. Amongst the latter, the same interferences led on the contrary to a "bunching" effect, and thus an increased probability of finding two particles together.
The experiments at the Institut d'optique were performed using the same system (which ensured identical conditions) on two helium isotopes.

In this situation, the scientists demonstrated the correlation length of fermions, which was close to a millimetre. This effect was anticipated, but its demonstration constitutes an advance in our ability to detect correlations between atoms, and thus a further step towards understanding the behaviour of matter at the quantum scale.

Citation: Comparison of the Hanbury Brown–Twiss effect for bosons and fermions, T. Jeltes, J. M. McNamara, W. Hogervorst, W. Vassen, V. Krachmalnicoff, M. Schellekens, A. Perrin, H. Chang, D. Boiron, A. Aspect & C. I. Westbrook. Nature, 2007, Vol. 445, No. 7126

Source: CNRS

Explore further: With neutrons, scientists can now look for dark energy in the lab

add to favorites email to friend print save as pdf

Related Stories

Molecular chains hypersensitive to magnetic fields

Jul 04, 2013

Researchers of MESA+, the research institute for nanotechnology of the University of Twente, in cooperation with researchers of the University of Strasbourg and Eindhoven University of Technology, are the ...

A new route to dissipationless electronics

Aug 19, 2012

A team of researchers at RIKEN and the University of Tokyo has demonstrated a new material that promises to eliminate loss in electrical power transmission. The surprise is that their methodology for solving ...

Neutrons uncover new density waves in fermion liquids

Mar 28, 2012

Scientists working at the Institut Laue-Langevin, one of the world's leading centres for neutron science, have carried out the first investigation of two-dimensional fermion liquids using neutron scattering, and discovered ...

Recommended for you

How to test the twin paradox without using a spaceship

8 hours ago

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

User comments : 0

More news stories

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...

Gate for bacterial toxins found

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...