Fermions do not travel together, theory proved

Mar 10, 2007

Fermions tend to avoid each other and cannot "travel" in close proximity. Demonstrated by a French team at the Institut d'optique (CNRS), this result is described in detail in the January 25, 2007 issue of Nature. It marks a major advance in our understanding of phenomena at a quantum scale.

For many years, the theory of quantum mechanics stipulated that certain particles, the fermions , were incapable of "travelling" in close proximity. For example, in a jet of identical particles, the theory supposed that the distance between them was always greater than a given value, called the "correlation length".

Scientists in the Charles Fabry Laboratory at the Institut d'optique, working with a team from the Free University in Amsterdam, have recently shown that this "anti-bunching" property, which it had never been possible to demonstrate hitherto, does indeed exist. It is as if the particles repel each other, even though interactions between them are negligible. In fact, this "anti-bunching" is due to quantum interferences which forbid the probability of finding two very close particles.

To arrive at this conclusion, the scientists compared the behaviour of fermions with that of bosons , under identical conditions. Amongst the latter, the same interferences led on the contrary to a "bunching" effect, and thus an increased probability of finding two particles together.
The experiments at the Institut d'optique were performed using the same system (which ensured identical conditions) on two helium isotopes.

In this situation, the scientists demonstrated the correlation length of fermions, which was close to a millimetre. This effect was anticipated, but its demonstration constitutes an advance in our ability to detect correlations between atoms, and thus a further step towards understanding the behaviour of matter at the quantum scale.

Citation: Comparison of the Hanbury Brown–Twiss effect for bosons and fermions, T. Jeltes, J. M. McNamara, W. Hogervorst, W. Vassen, V. Krachmalnicoff, M. Schellekens, A. Perrin, H. Chang, D. Boiron, A. Aspect & C. I. Westbrook. Nature, 2007, Vol. 445, No. 7126

Source: CNRS

Explore further: New insights found in black hole collisions

add to favorites email to friend print save as pdf

Related Stories

From pencil marks to quantum computers

Jul 03, 2014

Pick up a pencil. Make a mark on a piece of paper. Congratulations: you are doing cutting-edge condensed matter physics. You might even be making the first mark on the road to quantum computers, according ...

Molecular chains hypersensitive to magnetic fields

Jul 04, 2013

Researchers of MESA+, the research institute for nanotechnology of the University of Twente, in cooperation with researchers of the University of Strasbourg and Eindhoven University of Technology, are the ...

Recommended for you

New insights found in black hole collisions

6 hours ago

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

6 hours ago

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

10 hours ago

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.