Paving the Way for Crystal Growth

Mar 07, 2007
Paving the Way for Crystal Growth
Genda Gu

In order to study the properties of LBCO superconductors, scientists need to produce large, single crystals of the material - a difficult task that wasn't possible until recently. At the state-of-the-art crystal growth facility in Brookhaven's physics building, physicist Genda Gu and his colleagues have perfected the process. Gu discussed his crystal growth method at the March 2007 meeting of the American Physical Society.

The crystals are grown in an infrared image furnace, a machine with two mirrors that focuses infrared light onto a feed rod, heating it to about 2,200 degrees Celsius (3,992 degrees Fahrenheit) and causing it to melt.

Under just the right conditions, Gu and his colleagues can make the liquefied material recrystallize as a single uniform crystal. At present, the most interesting form of LBCO has one barium atom for every eight copper atoms, or a 1/8 "doping," at which point the material loses its superconductivity. Achieving this high barium concentration is extremely difficult and is the reason many scientists previously opted to use different but related materials for their research on superconducting stripes and other properties, Gu said.

"LBCO was the first high-temperature superconductor discovered, but everyone switched over to studying other materials for a while because they weren't able to grow single crystals with a concentration of barium greater than 11 percent," Gu said. "Now, we can study the whole class of high-Tc materials."

Each crystal takes about a month to make, with precise control over growth temperature, atmosphere, and other factors. Brookhaven is currently capable of making crystals with barium concentrations up to 16.5 percent, a world record, Gu said.

Source: BNL

Explore further: Researchers develop scalable methods for manufacturing metamaterials

add to favorites email to friend print save as pdf

Related Stories

Using electron beams to encode data in nanocrystals

Mar 26, 2014

Ferroelectric materials have an intrinsic electrical polarization caused by a small shift in the position of some of their atoms that occurs below a critical point called the Curie temperature. This polarization ...

Colored diamonds are a superconductor's best friend

Mar 06, 2014

(Phys.org) —Flawed but colorful diamonds are among the most sensitive detectors of magnetic fields known today, allowing physicists to explore the minuscule magnetic fields in metals, exotic materials and ...

Cooking up new nanoribbons to make better white LEDs

Feb 27, 2014

As the world moves away from incandescent light bulbs, light-emitting diodes (LEDs) are growing in popularity. They use significantly less energy and have far longer lifetimes than do the traditional incandescent ...

Recommended for you

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

User comments : 0

More news stories

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...