Paving the Way for Crystal Growth

Mar 07, 2007
Paving the Way for Crystal Growth
Genda Gu

In order to study the properties of LBCO superconductors, scientists need to produce large, single crystals of the material - a difficult task that wasn't possible until recently. At the state-of-the-art crystal growth facility in Brookhaven's physics building, physicist Genda Gu and his colleagues have perfected the process. Gu discussed his crystal growth method at the March 2007 meeting of the American Physical Society.

The crystals are grown in an infrared image furnace, a machine with two mirrors that focuses infrared light onto a feed rod, heating it to about 2,200 degrees Celsius (3,992 degrees Fahrenheit) and causing it to melt.

Under just the right conditions, Gu and his colleagues can make the liquefied material recrystallize as a single uniform crystal. At present, the most interesting form of LBCO has one barium atom for every eight copper atoms, or a 1/8 "doping," at which point the material loses its superconductivity. Achieving this high barium concentration is extremely difficult and is the reason many scientists previously opted to use different but related materials for their research on superconducting stripes and other properties, Gu said.

"LBCO was the first high-temperature superconductor discovered, but everyone switched over to studying other materials for a while because they weren't able to grow single crystals with a concentration of barium greater than 11 percent," Gu said. "Now, we can study the whole class of high-Tc materials."

Each crystal takes about a month to make, with precise control over growth temperature, atmosphere, and other factors. Brookhaven is currently capable of making crystals with barium concentrations up to 16.5 percent, a world record, Gu said.

Source: BNL

Explore further: Synthesis of a new lean rare earth permanent magnetic compound superior to Nd2Fe14B

add to favorites email to friend print save as pdf

Related Stories

New complex oxides could advance memory devices

Sep 17, 2014

The quest for the ultimate memory device for computing may have just taken an encouraging step forward. Researchers at The City College of New York led by chemist Stephen O'Brien have discovered new complex ...

Boosting microelectronics with a little liquid logic

Aug 08, 2014

Certain titanium-based metal oxides can form a crystal structure known as perovskite that results in a subtle internal imbalance of electric charges. This imbalance gives the material the ability to flip ...

Study finds physical link to strange electronic behavior

Aug 01, 2014

Scientists have new clues this week about one of the baffling electronic properties of the iron-based high-temperature superconductor barium iron nickel arsenide. A Rice University-led team of U.S., German ...

Refocusing research into high-temperature superconductors

Jul 31, 2014

Below a specific transition temperature superconductors transmit electrical current nearly loss-free. For the best of the so-called high-temperature superconductors, this temperature lies around -180 °C – a temperature ...

Recommended for you

Cooling with molecules

19 hours ago

An international team of scientists have become the first ever researchers to successfully reach temperatures below minus 272.15 degrees Celsius – only just above absolute zero – using magnetic molecules. ...

A 'Star Wars' laser bullet

20 hours ago

Action-packed science-fiction movies often feature colourful laser bolts. But what would a real laser missile look like during flight, if we could only make it out? How would it illuminate its surroundings? ...

User comments : 0