Atomic clock signals may be best shared by fiber-optics

Mar 02, 2007

Time and frequency information can be transferred between laboratories or to other users in several ways, often using the Global Positioning System (GPS). But today's best atomic clocks are so accurate—neither gaining nor losing one second in as long as 400 million years—that more stable methods are needed. The best solution may be to use lasers to transfer data over fiber-optic cables, according to scientists at JILA, a joint institute of the National Institute of Standards and Technology and the University of Colorado at Boulder.

The use of fiber-optic channels to transfer time signals allows accurate comparisons of distantly located atomic clocks of different types. This could lead, for example, to enhanced measurement accuracy in experiments to determine whether so-called "constants of nature" are in fact changing. Sharing of clock signals via fiber also will enable synchronization of components for advanced X-ray sources at linear accelerators, which may power studies of ultrafast phenomena in chemistry, biology, physics and materials science; or link arrays of geographically distributed radio telescopes to produce the power of a giant telescope.

Three state-of-the-art techniques for distributing ultra-stable time and frequency signals over fiber are described in a new review article by NIST Fellow Jun Ye's group at JILA. Fibers can be far more stable, especially when efforts are made to cancel molecules along the transmission path, than the paths through free-space used by GPS, which requires days of measurement averaging to accurately compare today's best frequency standards. Moreover, considerable fiber-optic infrastructure already exists. For instance, the new paper is based largely on research performed on a 3.45-km fiber link installed in underground conduits and steam tunnels between JILA and NIST laboratories in Boulder.

Microwave frequency signals such as from NIST's standard atomic clock www.nist.gov/public_affairs/te… b2005_0923.htm#clock can be distributed over fiber using a continuous-wave (cw) laser. Another method can transfer more accurate optical frequency references such as NIST's mercury ion clock www.nist.gov/public_affairs/re… ury_atomic_clock.htm or JILA's strontium clock with a cw laser and disseminate signals to both optical and microwave users using an optical frequency comb www.nist.gov/public_affairs/ne… _frequency_combs.htm. As a third option, microwave and optical frequency references can be transmitted simultaneously using a frequency comb.

Noting that gravitational effects may eventually limit ground-based atomic clocks, the paper suggests someday creating a network of optical atomic clocks in space, which might be used to make flawless distance measurements, transfer clock signals to different locations, and accurately map the Earth's gravity distribution.

Citation: S.M. Foreman, K.W. Holman, D.D. Hudson, D.J. Jones, and J. Ye. Remote transfer of ultrastable frequency references via fiber networks. Invited Review, Review of Scientific Instruments. Vol. 78, No. 228. Published on-line Feb. 28, 2007.

Source: National Institute of Standards and Technology

Explore further: New insights found in black hole collisions

add to favorites email to friend print save as pdf

Related Stories

How particle accelerator maths helped me fix my Wi-Fi

Mar 25, 2015

Electromagnetic radiation – it might sound like something that you'd be better off avoiding, but electromagnetic waves of various kinds underpin our senses and how we interact with the world – from the ...

New detector sniffs out origins of methane

Mar 05, 2015

Methane is a potent greenhouse gas, second only to carbon dioxide in its capacity to trap heat in Earth's atmosphere for a long time. The gas can originate from lakes and swamps, natural-gas pipelines, deep-sea ...

Recommended for you

New insights found in black hole collisions

10 hours ago

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

10 hours ago

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

13 hours ago

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.