Lakes beneath Antarctic ice sheets found to initiate and sustain flow of ice to ocean

Feb 21, 2007

The Earth Institute at Columbia University—One of the planet's most remote and little-understood features may play a crucial role in transporting ice from the remote interior of Antarctica towards the surrounding ocean according to a new research.

Geophysicists Robin Bell and Michael Studinger from the Lamont-Doherty Earth Observatory, a part of The Earth Institute at Columbia University, led a team that discovered four large, subglaical lakes that for the first time the link these water bodies locked beneath miles of ice, to fast flowing ice streams in Antarctica. Together with colleagues from NASA, the University of New Hampshire and the University of Washington, the scientists found that, in four separate cases, lakes appear to contribute to the formation of ice streams. Their work appears in the February 22 issue of the journal Nature.

Ice streams are large, fast-flowing features within ice sheets that transport land-based ice and meltwater to the ocean. One such stream, the Recovery Ice Stream, drains 8 percent of the U.S.-sized East Antarctic Ice Sheet. The Recovery basin, unexplored since 1966, funnels an estimated 35 billion tons of ice into the Weddell Sea annually.

"Until about a year ago, not many people cared much about subglacial lakes," said Studinger. "That's changing, but we're still only just beginning to understand how these lakes, sealed beneath more than two miles of ice, have the potential to impact the rest of the world."

The scientists examined satellite radar images and high-resolution laser profiles of the region for ice stream patterns and surface features indicating the presence of subglacial lakes beneath the ice. Not only did they find four new lakes, but they discovered that the lakes coincide with the origin of tributaries of the Recovery Glacier. Upstream of the lakes, the ice sheet moves at just 2 to 3 meters per year; downstream the flow increases to nearly 50 meters per year. Bell and Studinger conclude that the lakes provide a reservoir of water that lubricates the bed of the stream to facilitate ice flow and prevent the base of the sheet from freezing to the bedrock.

Moreover, their work suggests that subglacial lakes could play a role in and sea level rise as well as regional and global climate change. Meltwater at the base of ice streams increases the flow of ice to the oceans, which could, in turn, contribute to higher sea levels worldwide. In addition, floods have been known to originate from the interior of the ice sheet in the past, possibly from subglacial lakes. These sudden pulses of fresh water could potentially interfere with nearby ocean currents that redistribute heat and carbon dioxide around the globe, disrupting the Earth's finely tuned climate system.

"It's almost as if the lakes are capturing the geothermal energy from the entire basin and releasing it to the ice stream." said Bell. "They power the engines that drive ice sheet collapse. The more we learn about them, the more we realize how important they are."

Source: The Earth Institute at Columbia University

Explore further: A 3-D view of the Greenland Ice Sheet opens window on ice history

add to favorites email to friend print save as pdf

Related Stories

UNL drillers help make new Antarctic discoveries

Jan 21, 2015

Using a hot-water drill and an underwater robotic vehicle designed, built and operated by a University of Nebraska-Lincoln engineering team, scientists have made new discoveries about Antarctica's geology ...

What percent of Earth is water?

Dec 02, 2014

The Earth is often compared to a majestic blue marble, especially by those privileged few who have gazed upon it from orbit. This is due to the prevalence of water on the planet's surface. While water itself ...

Recommended for you

Geologists solve mystery of Tibetan mountains

Jan 23, 2015

In the most comprehensive study of its kind, University of Kansas geologists have unraveled one of the geologic mysteries of Tibet. The research, recently published online in Nature Geoscience, shows that i ...

Image: Greenland's Leidy Glacier

Jan 23, 2015

Located in the northwest corner of Greenland, Leidy Glacier is fed by ice from the Academy Glacier (upstream and inland). As Leidy approaches the sea, it is diverted around the tip of an island that separates ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.