Toshiba Plug Loophole in Security of Quantum Cryptography

Feb 20, 2007

Toshiba Research announced today that it has developed two new technologies to realize 'unconditionally secure' quantum key distribution (QKD). To achieve this, Toshiba has overcome a potential security loophole in current commercial QKD systems. Part of these technologies are exhibited in Nano Tech 2007 in Tokyo.

In principle, quantum key distribution provides an absolutely secure means for transmitting secret keys between two parties on fibre optical networks. However, the QKD systems developed so far have a vulnerability which leaves them open to hacking. The weak laser diode used to generate single photon pulses which carry the quantum keys, will sometimes generate pulses with multiple photons.

As a result, an eavesdropper could split off one of these extra photons and measure it, while leaving the other photons in the pulse undisturbed, thus determining part of the key while remaining undetected. Furthermore, an eavesdropper could even determine the entire key, by blocking the single-photon pulses and allowing only the multi-photon pulses to travel through the fibre.

Now two solutions to this problem have been found, the first of which has already been implemented by Toshiba in their QKD system.

Toshiba has implemented a new method for QKD, in which the photon signal pulses are interspersed randomly with a number of “decoy pulses”. These decoy pulses are weaker on average and so very rarely contain two or more photons. If an eavesdropper attempts a pulse-splitting attack, she will transmit a lower fraction of these decoy pulses than signal pulses. Thus by monitoring the transmission of the decoy and signal pulses separately this type of intervention can be detected.

By introducing decoy pulses, stronger laser pulses may be used securely, increasing the rate at which keys may be sent. Toshiba have demonstrated a 100-fold increase in the rate that keys could be transmitted securely over a 25km fibre to an average bit rate of 5.5kbits/sec – the highest value to date for a full QKD system. This work is part of the EU initiative SECOQC to build a secure communication network based on QKD.

“Using these new methods for QKD we can distribute many more secret keys per second, while at the same time guaranteeing the unconditional security of each. This enables QKD to be used for a number of important applications such as encryption of high bandwidth data links,” said Dr Andrew Shields, Quantum Information Group Leader at Toshiba Research Europe.

The second method, based on nano-technology, will produce even higher bit rates in the future. Toshiba has created the first semiconductor diode that can be controlled with electrical signal input to emit only single photons at a wavelength compatible with optical fibres. This ‘single photon source’ method eliminates the problem of multi-photon pulses altogether. It was developed as part of a DTI funded programme involving the University of Cambridge, Imperial College London and Toshiba.

The single photon diode has a structure similar to an ordinary semiconductor light emitting diode (LED), like those used in traffic lights and indicator lamps, except that it contains a tiny semiconductor quantum dot, measuring just 45 nm in diameter and 10 nm in height. The dot can hold only a few electrons and so can only ever emit one photon at a time at the selected wavelength. The source operates with only electrical signals, which is essential for practical applications such as QKD. Initial trials with the new device, reported recently in the scientific journal Applied Physics Letters, show the multi-photon rate from the device is fives times lower than that of a laser diode of the same intensity.

"We are now entering the quantum age and we are seeing the first few steps in the development of technologies which will have a profound effect on the development of communications," the Managing Director of Cambridge Research Laboratory in Toshiba Research Europe, Professor Sir Michael Pepper, said. "Some years ago Toshiba took the decision to invest and build up a team of experts to pursue fundamental research in an industrial setting, this breakthrough as well as the entire development of optically based quantum communications is the result of that decision."

Cryptography, the science of information security, is essential to protect electronic business communication and e-commerce, enabling, for example, confidentiality, identification of users and validation of transactions. All of these applications rely upon digital keys, which are shared between the legitimate users, but must be kept secret from everyone else. Maintaining the ability to distribute keys securely is thus one of the most important battlefields in the cryptography arms race. It is essential to be able to distribute keys between users securely. Furthermore, in order to protect the system from crypto-analysis or key theft it is important to change the keys frequently.

Quantum cryptography allows users on an optical fibre network to refresh frequently their keys in a completely secret way. It takes advantage of the particle-like nature of light. Each bit of the key is encoded upon a single photon (a light particle) sent down the fibre. As a photon is indivisible and cannot be copied, this ensures that the key cannot be stolen by an eavesdropper without the sender’s and receiver’s knowledge.

Toshiba have developed a quantum key distribution system where the photons travel one way from sender to receiver, the only configuration that has been rigorously proven secure. This was achieved using an active stabilization system, which manages and automatically adjusts the hardware to maintain continuous operation. The result is an efficient, easy-to-use system, which serves keys for crypto applications and requires no user adjustments.

Source: Toshiba

Explore further: X-rays probe LHC for cause of short circuit

add to favorites email to friend print save as pdf

Related Stories

A 'quantum leap' in encryption technology

Apr 24, 2014

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Making light work: The 50-year odyssey of the laser

May 12, 2010

Fifty years ago next Sunday, a 32-year-old engineer called Theodore Maiman switched on a gadget at Hughes Research Laboratories in California, and watched as pulses of light sprang from a pink ruby crystal.

MRI pioneer wins national physics prize

Sep 22, 2005

With its ability to obtain detailed pictures from the depths of the living body, magnetic resonance imaging (MRI) has saved many lives and dramatically increased knowledge of the human body, particularly the brain. There ...

Recommended for you

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.