Under pressure, vanadium won't turn down the volume

Feb 20, 2007

Scientists at Carnegie’s Geophysical Laboratory have discovered a new type of phase transition—a change from one form to another—in vanadium, a metal that is commonly added to steel to make it harder and more durable. Under extremely high pressures, pure vanadium crystals change their shape but do not take up less space as a result, unlike most other elements that undergo phase transitions. The work appears in the February 23 issue of Physical Review Letters.

Led by High Pressure Collaborative Access Team (HPCAT) research scientist Yang Ding, the team used a diamond anvil cell to subject vanadium crystals to pressures more than 600 thousand times higher than the atmospheric pressure at sea level (which is about one bar). Using the high-resolution HPCAT x-ray facility, the scientists were able to detect that the basic atomic packing units of vanadium crystals had changed from a cube to a rhombohedron, which resembles a cube whose sides have been squashed from squares into diamond shapes.

“Trying to understand why high-pressure vanadium uniquely has the record-high superconducting temperature of all known elements inspired us to study high-pressure structure of vanadium," Ding said. “We had no idea that we would discover a completely new type of phase transition."

The most familiar phase transitions are those between gas, liquid, and solid forms. In general, increasing pressure and decreasing temperature will cause a substance to take up less space and eventually form a solid. But as a result of their atoms packing in closer together at extremely high pressures, some solids undergo further changes in their physical properties and can even change shape, which usually results in a change in volume. But in this respect, vanadium is unique.

Though it is expensive to mine and refine, vanadium is extremely important in the industrial world, where its main use is as a steel additive. Steel that contains vanadium is exceptionally strong and resistant to metal fatigue, making it ideal for kitchen knives that stay sharp almost indefinitely, and jet turbine blades that can withstand high speed and abrasion.

Pure vanadium crystals in cubic form were thought to be able to resist pressures over several million bars. Recent theoretical calculations, however, suggested that pressure could cause unusual electronic interactions in vanadium that would destroy the cubic crystals. Instead, vanadium avoids this collapse by changing to a rhombohedron.

“Although this type of transition was first observed in vanadium, it suggests that we should reexamine many other elements we thought were very stable," Ding explained. “Moreover, the transition provides a new explanation for the continuous rising of superconducting temperature in high-pressure vanadium, and could lead us to the next breakthrough in superconducting materials."

Source: Carnegie Institution

Explore further: And so they beat on, flagella against the cantilever

add to favorites email to friend print save as pdf

Related Stories

Squeezing out the hidden lives of electrons

Feb 28, 2014

In our daily lives we tend to think of electrical conductivity as largely static: Copper is a good choice for conduction; clay is not. But heat up that copper wire, and electron conduction slows. Give a flake ...

Scientists crack materials mystery in vanadium dioxide

Nov 23, 2010

(PhysOrg.com) -- A systematic study of phase changes in vanadium dioxide has solved a mystery that has puzzled scientists for decades, according to researchers at the Department of Energy's Oak Ridge National ...

Recommended for you

And so they beat on, flagella against the cantilever

Sep 16, 2014

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Tandem microwave destroys hazmat, disinfects

Sep 16, 2014

Dangerous materials can be destroyed, bacteria spores can be disinfected, and information can be collected that reveals the country of origin of radiological isotopes - all of this due to a commercial microwave ...

Cornell theorists continue the search for supersymmetry

Sep 16, 2014

(Phys.org) —It was a breakthrough with profound implications for the world as we know it: the Higgs boson, the elementary particle that gives all other particles their mass, discovered at the Large Hadron ...

How did evolution optimize circadian clocks?

Sep 12, 2014

(Phys.org) —From cyanobacteria to humans, many terrestrial species have acquired circadian rhythms that adapt to sunlight in order to increase survival rates. Studies have shown that the circadian clocks ...

User comments : 0