Nanotubes transport gene therapy drug into T-cells known to block HIV from entering cells in vitro

Feb 20, 2007

A promising approach to gene therapy involves short DNA fragments (interfering RNA) that bind to specific genes and block their "translation" into the corresponding, disease-related protein. A stumbling block has been the efficient and targeted delivery of RNA into the cells. Researchers led by Hongjie Dai at Stanford University have chosen to use carbon nanotubes as their "means of transport".

This has allowed them to successfully introduce RNA fragments that "switch off" the genes for special HIV-specific receptors and co-receptors on the cells’ surface into human T-cells and primary blood cells. This leaves few "entry hatches" for the HIV viruses. The researchers report in the journal Angewandte Chemie that this allows for much better silencing effect to the cells than current transport systems based on liposomes.

T-cells are one of the types of white blood cells important for a good immune defense; they detect and destroy virus-affected cells. However, they themselves are among the targets attacked by HIV. In order to enter into a T-cell, the virus must first dock to a receptor known as CD4. Also involved is the co-receptor CXCR4. The use of short interfering RNA strands allows the CD4 and CXCR4 genes of the T-cell to be shut off. The T-cell then strops producing these receptors and the virus cannot find any points of attack on the surface of the cell. This could significantly slow down an HIV infection, as previous work have shown.

But how to get the RNA fragments into the T-cells? The shells of nonpathogenic viruses can be used to smuggle genetic material into cells, but this is dangerous in therapeutic applications because they can trigger allergies. Liposomes, tiny bubbles of fat, are safe but have proven to be ineffective for use in T-cells. Dai and his co-workers have tested a new transport system: carbon nanotubes are known for their abilities to be absorbed by cells and to smuggle other molecules in at the same time. The researchers attached phospholipids—molecules from which cell membranes are also made—to chains of polyethylene glycol. The phospholipids nestle securely onto the outer wall of the carbon nanotubes while the polyethylene glycol chains protrude into the surrounding solution. The required RNA molecules were fastened to the ends of these chains. Once inside the cell, the RNA could easily be split off by means of a sulfur–sulfur bridge.

Citation: Hongjie Dai, siRNA Delivery into Human T Cells and Primary Cells with Carbon-Nanotube Transporters, Angewandte Chemie International Edition 2007, 46, No. 12, doi: 10.1002/anie.200604295

Source: John Wiley & Sons, Inc.

Explore further: Ultra-small block 'M' illustrates big ideas in drug delivery

add to favorites email to friend print save as pdf

Related Stories

French minister meets with Google, Facebook, Twitter

11 hours ago

The French interior minister is meeting with representatives from Google, Facebook and Twitter to encourage them to join the European Union in its fight against propaganda disseminated online by terrorist ...

Ancient and modern cities aren't so different

12 hours ago

Despite notable differences in appearance and governance, ancient human settlements function in much the same way as modern cities, according to new findings by researchers at the Santa Fe Institute and the ...

Recommended for you

Semiconductor miniaturisation with 2D nanolattices

8 hours ago

A European research project has made an important step towards the further miniaturisation of nanoelectronics, using a highly-promising new material called silicene. Its goal: to make devices of the future ...

Ultra-small block 'M' illustrates big ideas in drug delivery

10 hours ago

By making what might be the world's smallest three-dimensional unofficial Block "M," University of Michigan researchers have demonstrated a nanoparticle manufacturing process capable of producing multilayered, precise shapes.

Magnetic nanoparticles enhance performance of solar cells

Feb 25, 2015

Magnetic nanoparticles can increase the performance of solar cells made from polymers - provided the mix is right. This is the result of an X-ray study at DESY's synchrotron radiation source PETRA III. Adding ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.